Вектор электрической индукции
Где ε – диэлектическая проницаемость среды.
Vektor tushunchasi. Vektorlar va ular ustida amallar
Vektor tushunchasi. Vektor odatda bitta yoki ikkita harf bilan quyidagicha yoziladi: Fizika, mexanika, texnika kabilarda moddiy nuqtaga ta’sir etuvchi kuch, harakatdagi nuqtaning tezligi, tezlanish singari tushunchalar ko`p uchraydi. Bu tushunchalar faqatgina kattalikka emas, balki ular yo’nalishga ham egadirlar.
Demak, bunday kattaliklarni ta’rifga asosan vektor kattalik yoki vektor deb qarash mumkin. Ba’zida vektor miqdor ham deyiladi. Kattalikka ega bo`lib, uning yo’nalishi talab qilinmaydigan kattaliklarga skalyar kattalik , skalyar miqdor yoki qisqacha skalyar deb ataladi.
Masalan, uzunlik,yuza, hajm,massa, temperatura kabilar skalyarga misol bo`la oladi. Agar vektorning boshi va oxiri ustma-ust tushsa, bunday vektorga nol vektor deyiladi. Nol vektorning uzunligi nolga teng bo`lib, u yo’nalishga ega emas. Bunday vektor yoki kabi belgilanadi. Chizmada nol vektor bitta nuqta bilan tasvirlanadi.
Faylni yuklab olish uchun yuklab olish tugmasini bosing.
Вектор электрической индукции
Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :
D → = ε 0 E → + P → , где ε 0 – электрическая постоянная, E → – вектор напряженности, P → – вектор поляризации.
Вектор электрического смещения в СНС определяется как:
Вектор индукции
Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:
По уравнению d i v D → = ρ видно, что для D → единственным источником будут являться свободные заряды, на которых данный вектор начинается и заканчивается. В точках с отсутствующими свободными зарядами вектор электрической индукции является непрерывным. Изменения напряженности поля, вызванные наличием связанных зарядов, учитываются в самом векторе D → .
Связь вектора напряженности и вектора электрического смещения
При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:
D → = ε 0 E → + ε 0 χ E → = ε 0 + ε 0 χ E → = ε ε 0 E → .
Где ε – диэлектическая проницаемость среды.
Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:
Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:
D 2 n – D 1 n = σ
n 2 → D 2 → – D 1 → = σ ,
где σ – поверхностная плотность распределения зарядов на границе диэлектриков, n 2 → – нормаль, проведенная в сторону второй среды.
Формула тангенциальной составляющей:
D 2 τ = ε 2 ε 1 D 1 τ .
Единица вектора электрической индукции измеряется в системе С И как К л м 2 .
Поле вектора D → изображается при помощи линий электрического смещения.
Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.
Имеются пластины плоского конденсатора с зарядом q . Произойдет ли изменение вектора электрической индукции при заполненном воздухом пространстве между пластинами и диэлектрика с диэлектрической проницаемостью ε ≠ ε υ o z d .
Решение
Поле конденсатора в первом случае характеризовалось вектором смещения ε v o z d = 1 , то есть D 1 → = ε v o z d ε 0 E 1 → = ε 0 E 1 → .
Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:
Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:
Запись результирующего поля с диэлектриком примет вид:
E = E 1 – E ‘ = σ ε 0 – σ s υ ε 0 = 1 ε 0 σ – σ s υ .
Формула плотности связанных зарядов:
Произведем подстановку σ s υ = χ ε 0 E в E = E 1 – E ‘ = σ ε 0 – σ s υ ε 0 = 1 ε 0 σ – σ s υ , тогда:
Далее выражаем из ( 1 . 6 ) напряженность поля Е . Формула принимает вид:
E = E 1 1 + χ = E 1 ε .
Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:
D = ε ε 0 E 1 ε = ε 0 E 1 = D 1 .
Ответ: вектор электрической индукции не изменяется.
Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.
Решение
Рисунок 1 . Замкнутая поверхность
Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :
Φ D = ∫ S D → · d S → .
Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.
Ответ: Φ D = 0 .
Изображена замкнутая поверхность S , проходящая с захватом части пластины изотропного диэлектрика на рисунке 2 . Поток вектора электрической индукции через нее равняется нулю, а поток вектора напряженности > 0 . Какой вывод можно сделать из данной задачи?
Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика
Решение
Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:
Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:
Φ D = ∫ S D → · d S → = Q = 0 .
Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.
Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.
Вектор электрической индукции
Допустим, что одно вещество имеет диэлектрическую проницаемость равную $_1$, а вторая $_2$, тогда нормальная составляющая вектора напряженности электростатического поля ($E_n$) уменьшается во столько раз, во сколько увеличивается диэлектрическая проницаемость среды:
где $E_$ – нормальная компонента напряженности поля в веществе 1; $E_$ – нормальная составляющая электростатического поля во втором веществе. Отметим, что при переходе из одного вещества в другое тангенциальная компонента вектора напряженности ($E_$) изменяется без скачка. Говорят, что на границе двух веществ происходит «преломление» силовых линий поля.
Для сохранения всех преимуществ, которые дает теорема Остроградского – Гаусса при рассмотрении электростатического поля в вакууме, в веществе вводят физическую величину, которая не испытывает скачка при переходе из одного вещества в другое с разными $\varepsilon $.
Так как при переходе из вакуума в вещество с диэлектрической проницаемостью равной $\varepsilon $ число силовых линий уменьшается в $\varepsilon $ раз, то векторная величина, равная:
будет оставаться неизменной при переходе из одного вещества в другое.
Определение вектора электрической индукции
Определение
Векторная величина, обозначаемая $\overline$, равная:
где $\overline$ – вектор поляризации.
Выражение (3) является наиболее общим определение вектора электрической индукции (вектора электрического смещения). Для большинства диэлектриков (исключением являются, например, сегнетоэлектрики) вектор поляризации пропорционален напряженности поля:
В таком случае от формулы (3) мы приходим к определению вектора электрической индукции вида (2).
Название «вектор индукции» указывает на связь вектора $\overline$ и явления электризации по влиянию (явление электростатической индукции).
Физический смысл вектора электрической индукции
Допустим, что в веществе, с диэлектрической проницаемостью равной $\varepsilon $ имеется очень тонкий вакуумный зазор, грани которого перпендикулярны направлению поля в точке рассмотрения (рис.1). В эту щель помещают точечный единичный положительный пробный заряд. Сила, с которой поле будет оказывать действие на этот пробный заряд, равна $\overline.$
И так, вектор электрической индукции – это сила, которая действует на точечный единичный положительный заряд, находящийся в бесконечно узком зазоре, грани которого перпендикулярны направлению поля.
Силовые линии вектора $\overline$ начинаются и заканчиваются на свободных зарядах. Величина $\overline$ не зависит от диэлектрической проницаемости вещества.
В некоторых источниках вектор электрической индукции называют формальным, так как он равен сумме физических величин, относящихся к разным объектам к полю и к веществу (см формулу (3), где $\overline$ – характеристика электрического поля; $\overline$ – характеристика вещества). Тогда говорят, что вектор электрической индукции не имеет физического смысла.
Теорема Гаусса – Остроградского для поля в диэлектрике
Поток вектора электрической индукции равен алгебраической сумме свободных зарядов, которые находятся внутри рассматриваемой замкнутой поверхности:
По теореме (5) поток вектора $\overline$ через любую замкнутую поверхность равен нулю, если внутри данной поверхности нет свободных зарядов. Заряды, находящиеся вне рассматриваемой поверхности на поток вектора $\overline$, не влияют.
Примеры задач с решением
Задание. Чему равен вектор поляризации в некоторой точке однородного изотропного диэлектрика, если известен вектор электрической индукции в этой точке ($\overline$)? Диэлектрическая проницаемость вещества равна $\varepsilon $.
Решение. За основу решения задачи примем определение вектора электрического смещения вида:
Выразим вектор поляризации из (1.1):
Так как по условию рассматриваемый диэлектрик является однородным и изотропным, то:
\[\overline=\varepsilon _0\overline\ \left(1.3\right),\]
Подставим правую часть формулы (1.4) вместо $\overline$ в уравнение (1.2), имеем:
Ответ. $\overline=\left(1-\frac\right)\overline$
Задание. Между двумя бесконечными заряженными пластинами, несущими одинаковые по величине, но противоположные по модулю заряды поместили пластину из диэлектрика. Пластина сторонних зарядов не имеет. Каков поток вектора электрической индукции через поверхность, которая изображена на рис.2?
Решение. В соответствии с теоремой Гаусса поток вектора электрической индукции равен алгебраической сумме свободных зарядов, которые находятся внутри выделенной замкнутой поверхности (рис.2). Так как по условию задачи свободных зарядов между пластинами и в диэлектрике нет, то поток вектора $\overline$ будет равен нулю:
Ответ. $\oint\nolimits_S<\overline
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Остались вопросы?
Здесь вы найдете ответы.
Comments are closed, but trackbacks and pingbacks are open.