Press "Enter" to skip to content

Hidrodinamik: Qanunlar, tətbiqetmələr və həll olunmuş məşq

WordPress, MODx.

ГИДРОДИНАМИКА

ГИДРОДИНАМИКА — раздел гидромеханики, изучающий закономерности движения жидкостей и их взаимодействия с твердыми телами, а также движения газов при условии, что скорость этого движения значительно меньше скорости звука в этом газе (при скоростях движения, равных или превышающих скорость звука, начинает сказываться сжимаемость газов, и методы Г. уже неприменимы) .

В медицине и биологии методы Г. используются при решении задач, связанных с течением крови, лимфы и других жидкостей в организме, с изучением особенностей течения газа в системе органов дыхания и т. д. Закономерности Г. учитываются при исследовании микропотоков, возникающих в клетках при действии на них ультразвуком, при изучении распространения механических колебаний от барабанной перепонки к кортиеву органу, при взаимодействии целостного организма с набегающим потоком газа или жидкости и т. д.

Г. делится на теоретическую и экспериментальную. При решении какой-либо задачи в Г. применяют основные законы и методы механики. Основные уравнения теоретической Г. получают, описывая либо достижение отдельной частицы жидкости, рассматриваемой как совокупность материальных частиц, заполняющих весь объем, либо движение частиц жидкости через данную точку пространства. Решение общих уравнений Г. может быть доведено до конца в некоторых частных случаях, поэтому стремятся максимально упростить задачи. Напр., в некоторых случаях можно с достаточной точностью описать реально наблюдаемые течения жидкостей, не учитывая их вязкость. В случае движения вязких жидкостей часто можно пренебречь ускорением и т. д. Известно, что характер течения вязкой жидкости определяется так наз. числом Рейнольдса, представляющим собой отношение произведения плотности жидкости, скорости ее течения и диаметра сосуда, по к-рому она течет, к вязкости жидкости. При малых значениях этого числа отдельные слои жидкости не перемешиваются и имеет место так наз. слоистое, или ламинарное, течение. При увеличении числа Рейнольдса ламинарное течение сменяется турбулентным, при к-ром происходит хаотическое перемешивание слоев движущейся жидкости. Для большинства однородных жидкостей критическое число Рейнольдса (при к-ром наблюдается смена режимов течения жидкости) составляет 1000.

Экспериментальная Г. основывается на моделировании, в основе к-рого лежит либо воссоздание потока жидкости и движения граничащих с ней твердых тел в измененном масштабе, либо замена процесса движения жидкости другими физ. процессами, удобными для воспроизведения.

Первый существенный шаг в изучении законов движения в жидкостях или газах был сделан Леонардо да Винчи, открывшим существование сопротивления среды. Теоретическое обоснование закона сопротивления среды принадлежит Ньютону (I. Newton, 1642—1727), показавшему, что существует сопротивление, связанное с трением среды о поверхности движущегося тела.

Законы движения так наз. идеальных жидкостей (жидкостей, вязкостью и сжимаемостью которых можно пренебречь) обосновали Эйлер (L. Euler, 1707—1783) и Д. Бернулли. Дальнейшее развитие Г. получила в работах Лагранжа (J. L. Lagrange, 1736—1813), Кирхгофа (G. R. Kirchhoff, 1824—1887), Г. Гельмгольца.

Существенным вкладом в Г. биол, жидкостей явились работы И. С. Громеки (1851 —1889), который теоретически исследовал течение вязкой жидкости в тонких трубках с твердыми и упругими стенками, а также H. Е. Жуковского (1847— 1921), С. А. Чаплыгина (1869— 1942) и др. Успехи Г. связаны с переходом к изучению вязких жидкостей, с учетом процессов, протекающих в пограничном слое. Методами Г. решают разнообразные задачи авиации, артиллерийской и ракетной техники, кораблестроения, технологии хим. машиностроения, а также проблемы, связанные со строительством газопроводов, трубопроводов, плотин, дамб и других сооружений.

Комплексными методами Г. и математической биологии исследуются проблемы, связанные с изменением гидродинамических параметров кровеносной и дыхательной систем при различных патол, нарушениях; методами Г. и физ. химии исследуются механизмы массообмена в капиллярах; методами Г. и фармакол, химии изучается возможность направленного воздействия на гидродинамические параметры биол, жидкостей.

Наибольшие успехи были достигнуты в Г. кровообращения, совершенствовании методов исследования и направленного изменения процессов, лежащих в основе кровообращения (см.), разработке новых методов диагностики, лечения и профилактики некоторых заболеваний, исследовании путей распространения лекарственных средств в организме, создании искусственных органов и устройств, действующих по тем же принципам, что и элементы. живого организма (см. Бионика).

В Г. кровообращения изучают процессы течения, регулирования тепло- и массообмена в системе кровообращения; физ. свойства крови, стенок сосудов и прилегающих тканей; гидродинамические явления в отдельных элементах системы кровообращения; турбулентность, кавитационные явления при течении крови, механику образования и движения тромбов; процессы в системах искусственного кровообращения, в аппаратах типа «искусственная почка» и в различных имплантируемых устройствах.

Одной из важнейших задач Г. является изучение закономерностей работы сердца, к-рое схематически может быть представлено в виде насоса с четырьмя камерами, соединенными попарно, и выполняющего свою работу благодаря ритмическим сокращениям сердечной мышцы.

Важное место в практической Г. занимает конструирование устройств для временной замены органов дыхания, кровообращения и др. Разработка таких приборов требует знания количественных характеристик кровеносной системы в норме и при патологии.

Наряду с традиционными методами измерения давления и скорости кровотока (термоанемометрическим, диафрагмальным и др.) находят применение современные пузырьковые, ультразвуковые, магнитогидродинамические и электродинамические методы, а также методы, основанные на явлении ядерного магнитного резонанса, и др.

Несмотря на значительные успехи Г. в области биологии и медицины, многие вопросы еще не решены окончательно. Спорными, напр., остаются вопросы о возможности турбулизации в потоке крови, о концентрировании форменных элементов в центре потока крови и т. д.

Особые трудности представляют гидродинамические исследования малых кровеносных сосудов (артериолы, капилляры, венулы) — прямое измерение давления и скорости движения крови, а тем более параметров, характеризующих массообмен с окружающими тканями (диффузии газов и фильтрации жидкости через стенки сосудов). Поэтому для изучения физиол. процессов необходимо развитие теоретических представлений, которые можно было бы сопоставить с экспериментальными данными о потоке крови, гидравлическом сопротивлении, потреблении кислорода и т. д.

В СССР научные исследования по Г. проводятся в Центральном аэрогидро динамическом ин-те, МГУ, ЛГУ и других вузах и отраслевых НИИ. За рубежом работы по Г. ведутся в США, Англии, Франции, ФРГ, Италии, Швеции, Японии и др.

Результаты теоретических и экспериментальных исследований в области Г. публикуются в многочисленных периодических изданиях: «Известия АН СССР (серия Математика, Физика)», «Journal of Applied Mechanics», «J. Physics of Fluids», «Journal of Fluid Mechanics», «Comptes rendus hebdomadaires des seances de l’Academie des Sciences», «Zeitschrift fur Flugwissenschaften» и т. д. Мед. и общебиол. проблемы Г. освещаются в журналах «Biorheology» и «Circulating Research».

Библиография: Гидродинамика кровобращения, пер. с англ., под ред. С. А. Регирера, М., 1971, библиогр.; Кровоснабжение жизненно важных органов, под ред. Л. А. Тарасова, Барнаул, 1974; Павловский Ю. Н., Регирер С. А. и С к о-б e л e в а И. М. Гидродинамика крови, в кн.: Гидромеханика, Итоги науки, 1968, с.9, М., 1970; Blood flow measurement, ed.by

Hidrodinamik: Qanunlar, tətbiqetmələr və həll olunmuş məşq

The hidrodinamik Mayelərin hərəkəti və hərəkətdə olan mayelərin sərhədləri ilə qarşılıqlı təsirlərinin öyrənilməsinə diqqət yetirən hidravlikanın bir hissəsidir. Etimologiyasına gəlincə, sözün mənşəyi Latın dilindədir hidrodinamik.

Hidrodinamikanın adı Daniel Bernoulli ilə əlaqədardır. 1738-ci ildə əsərində nəşr etdirdiyi hidrodinamikanı tədqiq edən ilk riyaziyyatçılardan biri idiHidrodinamik. Hərəkətdə olan mayelər insan bədənində, damarlar arasında dolaşan qanda və ya ağciyərlərdən axan havada olur.

Mayelər həm gündəlik həyatda, həm də mühəndislikdə çoxsaylı tətbiqlərdə olur; məsələn, su təchizatı borularında, qaz borularında və s.

Bütün bunlar üçün bu fizika sahəsinin əhəmiyyəti açıq görünür; tətbiqləri səhiyyə, mühəndislik və inşaat sahələrində boş yerə deyil.

Digər tərəfdən, hidrodinamikanın mayelərin öyrənilməsi ilə məşğul olduqda bir sıra yanaşmaların bir elmi hissəsi olduğunu aydınlaşdırmaq vacibdir.

Təxminlər

Hərəkətdə olan mayeləri öyrənərkən onların analizini asanlaşdıran bir sıra təxmini işləri aparmaq lazımdır.

Bu şəkildə mayelərin anlaşılmaz olduğu və bu səbəbdən təzyiq dəyişikliyi altında sıxlığının dəyişməz qaldığı düşünülür. Bundan əlavə, özlülük mayesinin enerji itkilərinin əhəmiyyətsiz olduğu qəbul edilir.

Nəhayət, maye axınlarının sabit bir vəziyyətdə baş verdiyi düşünülür; yəni eyni nöqtədən keçən bütün hissəciklərin sürəti həmişə eynidir.

Hidrodinamikanın qanunları

Mayelərin hərəkətini tənzimləyən əsas riyazi qanunlar və nəzərə alınacaq ən vacib kəmiyyətlər aşağıdakı hissələrdə ümumiləşdirilmişdir:

Davamlılıq tənliyi

Əslində davamlılıq tənliyi, kütlənin qorunması üçün bir tənlikdir. Bu şəkildə xülasə etmək olar:

Bir boru verilmiş və iki hissə S verilmişdir1 və S2, V sürətdə dövran edən bir maye var1 və V.2sırasıyla.

İki bölməni birləşdirən bölmə giriş və ya istehlak istehsal etmirsə, onda bir hissədə birinci hissədən keçən maye miqdarının (buna kütləvi axın deyilir) eyni olduğunu söyləmək olar. ikinci hissə.

Bu qanunun riyazi ifadəsi aşağıdakılardır:

Bernoulli prinsipi

Bu prinsip, qapalı bir boru kəməri ilə dolaşan ideal bir mayenin (sürtünmə və viskozite olmadan) hər zaman yolunda sabit bir enerjiyə sahib olacağını müəyyənləşdirir.

Teoreminin riyazi ifadəsindən başqa bir şey olmayan Bernoulli tənliyi belə ifadə olunur:

v 2 ∙ ƿ / 2 + P + ƿ ∙ g ∙ z = sabit

Bu ifadədə v nəzərə alınan hissədən keçən mayenin sürətini, ƿ mayenin sıxlığını, P mayenin təzyiqini, g cazibə sürətinin dəyərini və z z ağırlıq.

Torricelli Qanunu

Torricelli teoremi, Torricelli qanunu və ya Torricelli prinsipi Bernoulli prinsipinin müəyyən bir işə uyğunlaşmasından ibarətdir.

Xüsusilə, bir cazibə içərisindəki bir mayenin cazibə qüvvəsinin təsiri altında kiçik bir çuxurdan keçərkən davranış tərzini araşdırır.

Bu prinsip belə ifadə edilə bilər: bir dəliyi olan bir gəmidəki bir mayenin yerdəyişmə sürəti, hər hansı bir cəsədin mayenin olduğu səviyyədən, vakumda sərbəst düşmə sürətidir. çuxurun ağırlıq mərkəzində yerləşən.

Riyazi olaraq, ən sadə versiyasında belə xülasə olunur:

Sözügedən tənlikdə Vr mayenin dəlikdən çıxarkən orta sürətidir, g cazibə sürətlənməsidir və h dəliyin mərkəzindən mayenin səthinin müstəvisinə olan məsafəsidir.

Proqramlar

Hidrodinamikanın tətbiqi həm gündəlik həyatda, həm də mühəndislik, inşaat və tibb kimi müxtəlif sahələrdədir.

Bu şəkildə bəndlərin dizaynında hidrodinamik tətbiq olunur; məsələn, eyni relyefi öyrənmək və ya divarlar üçün lazımi qalınlığı bilmək.

Eyni şəkildə, kanallar və su boruları tikintisində və ya bir evin su təchizatı sistemlərinin dizaynında istifadə olunur.

Aviasiyada, təyyarələrin qalxmasına üstünlük verən şərtlərin öyrənilməsində və gəmi gövdələrinin dizaynında tətbiqləri var.

Məşq həll edildi

Bir mayenin sıxlığı gəzdirdiyi bir boru 1.30 is 10 təşkil edir 3 Kg / m 3 ilkin hündürlük z ilə üfüqi uzanır0= 0 m. Bir maneəni aşmaq üçün boru z hündürlüyünə qalxır1= 1.00 m. Borunun kəsiyi sabit qalır.

Aşağı səviyyədə bilinən təzyiq (S0 = 1.50 atm), yuxarı səviyyədəki təzyiqi təyin edin.

Bernoulli prinsipini tətbiq edərək problemi həll edə bilərsiniz, buna görə də etməlisiniz:

Sürət sabit olduğu üçün aşağıya enir:

Əvəz etmək və təmizləməklə aşağıdakıları əldə edəcəksiniz:

P1 = 1,50 ∙ 1,01 ∙ 10 5 + 1,30 ∙ 10 3 ∙ 9,8 ∙ 0- 1,30 ∙ 10 3 ∙ 9,8 ∙ 1 = 138 760 Pa

İstinadlar

  1. Hidrodinamik. (nd). Vikipediyada. 19 may 2018-ci il tarixində es.wikipedia.org saytından alındı.
  2. Torricelli teoremi. (nd). Vikipediyada. 19 may 2018-ci il tarixində es.wikipedia.org saytından alındı.
  3. Batchelor, G.K. (1967).Maye Dinamikasına Giriş. Cambridge University Press.
  4. Quzu, H. (1993).Hidrodinamik(6-cı red.). Cambridge University Press.
  5. Mott, Robert (1996).Tətbiqi maye mexanikası(4 ed.). Meksika: Pearson Təhsili.

Гидродинамика

— раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью, законы и методы Г. широко используются для аэродинамических расчётов летательных аппаратов при малых дозвуковых скоростях полёта. Большинство капельных жидкостей, например, вода, обладают слабой сжимаемостью, и во многих важных случаях их плотность (ρ) можно считать постоянной. Однако сжимаемостью среды нельзя пренебрегать в задачах взрыва, удара и других случаях, когда возникают большие ускорения частиц жидкости и от источника возмущений распространяются упругие волны.
Фундаментальные уравнения Г. выражают собой сохранения законы массы (импульса и энергии). Если предположить, что движущаяся среда является ньютоновской жидкостью и для анализа её движения применить метод Эйлера, то течение жидкости будет описываться неразрывности уравнением, Навье — Стокса уравнениями и энергии уравнением. Для идеальной несжимаемой жидкости уравнения Навье — Стокса переходят в Эйлера уравнения, а уравнение энергии выпадает из рассмотрения, поскольку динамика течения несжимаемой жидкости не зависит от тепловых процессов. В этом случае движение жидкости описывается уравнением неразрывности и уравнениями Эйлера, которые удобно записать в форме Громеки — Ламба (по имени русский учёного И. С. Громеки и английского учёного Г. Ламба.
Для практических приложений важны интегралы уравнений Эйлера, которые имеют место в двух случаях:
а) установившееся движение при наличии потенциала массовых сил (F = -gradΠ); тогда вдоль линии тока будет выполняться Бернулли уравнение, правая часть которого постоянна вдоль каждой линии тока, но, вообще говоря, меняется при переходе от одной линии тока к другой. Если жидкость вытекает из пространства, где она покоится, то постоянная Бернулли H одинакова для всех линий тока;
б) безвихревое течение: ((ω) = rotV = 0. В этом случае V = grad(φ), где (φ) — потенциал скорости, и массовые силы обладают потенциалом. Тогда для всего поля течения справедлив интеграл (уравнение) Коши — Лагранжа д(φ)/дt + V2/2 + p/(ρ) + П = H(t). В обоих случаях указанные интегралы позволяют определить поле давлений при известном поле скоростей.
Интегрирование уравнения Коши — Лагранжа в интервале времени (Δ)t(→)0 в случае ударного возбуждения течения приводит к соотношению, связывающему приращение потенциала скорости с импульсом давления pi.
Всякое движение первоначально покоящейся жидкости, вызванное силами веса или нормальными давлениями, приложенными к её границам, потенциально. Для реальных жидкостей, обладающих вязкостью, условие (ω) = 0 выполняется лишь приближённо: вблизи обтекаемых твёрдых границ существенно сказывается вязкость и образуется пограничный слой, где (ω ≠ )0. Несмотря на это, теория потенциальных течений позволяет решать ряд важных прикладных задач.
Поле потенциального течения описывается потенциалом скорости (φ), который удовлетворяет уравнению Лапласа
divV = (Δφ) = 0.
Доказано, что при заданных граничных условиях на поверхностях, ограничивающих область движения жидкости, его решение единственно. В силу линейности уравнения Лапласа справедлив принцип суперпозиции решений и, следовательно, для сложных течений решение можно представить как сумму более простых течений (см. Источников и стоков метод). Так, при продольном обтекании однородным потоком отрезка с распределёнными по нему источниками и стоками с равной нулю суммарной интенсивностью образуются замкнутые поверхности тока, которые можно рассматривать как поверхности тел вращения, например, корпуса летательного аппарата.
При движении тела в реальной жидкости всегда возникают гидродинамические силы из-за его взаимодействия с жидкостью. Одна часть суммарной силы обусловлена присоединёнными массами и пропорциональна скорости изменения связанного с телом импульса примерно так же, как в идеальной жидкости. Другая часть суммарной силы связана с образованием следа аэродинамического за телом, который формируется в течение всей истории движения. След влияет на поле течения вблизи тела, поэтому численное значение присоединённой массы может не совпадать с его значением для аналогичного движения в идеальной жидкости. След за телом может быть ламинарным или турбулентным, может образовываться свободными границами, например, за глиссером.
Аналитические решения нелинейных задач, связанных с пространственным движением тел в жидкости при наличии следа, удаётся получить лишь в некоторых частных случаях.
Плоскопараллельные течения исследуются методами теории функций комплексного переменного; эффективно решение некоторых задач гидродинамики методами вычислительной математики. Приближенные теории получаются путём рациональной схематизации картины течения, применения теорем сохранения, использования свойств свободных поверхностей и вихревых течений, а также некоторых частных решений. Они разъясняют суть дела и удобны для предварительных расчётов. Например, при быстром погружении в воду клина с углом полураствора (β)к возникает существенное движение свободных границ в области брызговых струй. Для оценки сил важно оценить эффективную смоченную ширину клина, которая значительно превышает соответствующую величину при статическом погружении острия на ту же глубину h. Приближенная теория для симметричной задачи показывает, что отношение динамической смоченной ширины 2a к статической близко к (π)/2 и приводит к следующим результатам: a = 0,5(π)hctg(β), где (β) = (π)/2-(β)к, удельная присоединённая масса m* = 0,5(πρ)a2/((β)) (f((β)) (≈) 1-(8 + (π))tg(β)/(π)2 для (β) 0, то давление в набегающем потоке и в бесконечности за телом больше, чем давление внутри каверны, и поэтому каверна не может простираться до бесконечности. При уменьшении σ размеры каверны возрастают и область замыкания удаляется от тела. При (σ) = 0 предельное кавитационное течение совпадает с обтеканием тел со срывом струй по схеме Кирхгофа (см. Струйных течений теория).
Для построения стационарного струйного течения используются различные идеализированные схемы, например, такая: свободные поверхности, сходящие с поверхности тела и направленные выпуклостью к внешнему потоку, при смыкании образуют струю, стекающую внутрь каверны (при математическом описании уходит на второй лист римановой поверхности). Решение такой задачи проводится методом, аналогичным методу Гельмгольца — Кирхгофа: В частности, для плоской пластины ширины l, установленной перпендикулярно набегающему потоку, коэффициент сопротивления cx, вычисляется по формуле
cx = cx0(1 + (σ)),
где cx0 = 2(π)/((π) + 4) — коэффициент сопротивления пластины, обтекаемой по схеме Кирхгофа. Для. пространственных (осесимметричных) каверн справедлив приближённый принцип независимости расширения, выражаемый уравнением
d2S/dt2 (≈) -K(p(∞)-pк)/(ρ),
где S(t) — площадь поперечного сечения каверны в неподвижной плоскости, перпендикулярной к траектории центра кавитатора p(∞)(t) —давление в рассматриваемой точке траектории, которое было бы до образования каверны; pк — давление в каверне. Константа К пропорциональна коэффициенту сопротивления кавитатора; для тупых тел К Гидродинамика 3.
С явлением кавитации приходится встречаться во многих технических устройствах. Начальная стадия кавитации наблюдается при заполнении имеющейся в потоке области пониженного давления пузырьками газа или пара, которые, схлопываясь, вызывают эрозию, вибрации и характерный шум. Пузырьковая кавитация возникает на гребных винтах, в насосах, трубопроводах и других устройствах, где из-за повышеной скорости давление понижается и приближается к давлению парообразования. Развитая кавитация с образованием каверны с низким давлением внутри имеет место, например, за реданами гидросамолётов, если подток воздуха в зареданное пространство оказывается стеснённым. Такие каверзы приводят к автоколебаниям, так называемым барсу. Срыв каверн на подводных крыльях и на лопастях гребных винтов приводит к снижению подъёмной силы крыла и «упора» винта.
Экспериментальная Г. помимо традиционных гидроканалов (опытовых бассейнов) располагает широким ассортиментом специальных установок, предназначенных для изучения быстропротекающих нестационарных процессов. Применяются скоростная киносъёмка, визуализация течений и другие методы. Обычно на одной модели нельзя удовлетворить всем требованиям подобия (см. Подобия законы), поэтому широко применяется «частичное» и «перекрёстное» моделирование. Моделирование и сравнение с теоретическими результатами является основой современных гидродинамических исследований.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

Синонимы:

  • Гидравлический удар
  • Гидроканал

Полезное

Смотреть что такое “Гидродинамика” в других словарях:

  • гидродинамика — гидродинамика … Орфографический словарь-справочник
  • ГИДРОДИНАМИКА — (от греч. hydor вода и динамика), раздел гидроаэромеханики, в к ром изучается движение несжимаемых жидкостей и их вз ствие с тв. телами. Г. исторически наиболее ранний и сильно развитый раздел механики жидкостей и газов, поэтому иногда Г. не… … Физическая энциклопедия
  • ГИДРОДИНАМИКА — (от гидро. и динамика) раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в… … Большой Энциклопедический словарь
  • ГИДРОДИНАМИКА — ГИДРОДИНАМИКА, в физике раздел МЕХАНИКИ, который изучает движение текучих сред (жидкостей и газов). Имеет большое значение в промышленности, особенно химической, нефтяной и гидротехнике. Изучает свойства жидкостей, такие как молекулярное… … Научно-технический энциклопедический словарь
  • ГИДРОДИНАМИКА — ГИДРОДИНАМИКА, гидродинамики, мн. нет, жен. (от греч. hydor вода и dynamis сила) (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Толковый словарь Ушакова. Д.Н.… … Толковый словарь Ушакова
  • гидродинамика — сущ., кол во синонимов: 4 • аэрогидродинамика (1) • гидравлика (2) • динамика (18) … Словарь синонимов
  • ГИДРОДИНАМИКА — часть гидромеханики, наука о движении несжимаемых жидкостей под действием внешних сил и о механическом воздействии между жидкостью и соприкасающимися с нею телами при их относительном движении. При изучении той или иной задачи Г. применяет… … Геологическая энциклопедия
  • Гидродинамика — раздел гидромеханики, изучающий законы движения несжимаемых жидкостей и взаимодействия их с твердыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок и т. д. EdwART. Толковый Военно морской… … Морской словарь
  • гидродинамика — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN hydrodynamics … Справочник технического переводчика
  • ГИДРОДИНАМИКА — раздел (см.), изучающий законы движения несжимаемой жидкости и её взаимодействие с твёрдыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок, судов на подводных крыльях и т.д … Большая политехническая энциклопедия
  • Обратная связь: Техподдержка, Реклама на сайте
  • �� Путешествия

Экспорт словарей на сайты, сделанные на PHP,

WordPress, MODx.

  • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
  • Искать во всех словарях
  • Искать в переводах
  • Искать в ИнтернетеИскать в этой же категории

Поделиться ссылкой на выделенное

Прямая ссылка:

Нажмите правой клавишей мыши и выберите «Копировать ссылку»

Comments are closed, but trackbacks and pingbacks are open.