СИМБИРСК ЭКСПЕРТИЗА
Значениями допускается пользоваться также и для назначения окончательных размеров фундаментов зданий и сооружений III класса.
Строительные нормы и правила СНиП 2.02.01-83* “Основания зданий и сооружений” (утв. постановлением Госстроя СССР от 5 декабря 1983 г. N 311) (с изменениями и дополнениями)
Отдельные части настоящих СНиП, указанные в Перечне национальных стандартов и сводов правил, утвержденном распоряжением Правительства РФ от 21 июня 2010 г. N 1047-р, признаны обязательными для применения для обеспечения соблюдения требований Технического регламента о безопасности зданий и сооружений
О статусе данного документа см. письмо Минрегиона России от 15 августа 2011 г. N 18529-08/ИП-ОГ
1. Общие положения
1.1. Основания сооружений должны проектироваться на основе:
а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;
б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации;
в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.
При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.
1.2. Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.
В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т.п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями.
1.3. Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-82*.
ГАРАНТ:
Взамен ГОСТ 25100-82 постановлением Минстроя РФ от 20 февраля 1996 г. N 18-10 с 1 июля 1996 г. введен в действие ГОСТ 25100-95
1.4. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.
Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается.
1.5. Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п.
1.6. В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, следует предусматривать проведение натурных измерений деформаций основания.
Натурные измерения деформаций основания должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по измерению деформаций основания.
2. Проектирование оснований
2.1. Проектирование оснований включает обоснованный расчетом выбор:
типа основания (естественное или искусственное);
типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, бутобетонные и др.);
мероприятий, указанных в пп.2.67 – 2.71, применяемых при необходимости уменьшения влияния деформаций оснований на эксплуатационную пригодность сооружений.
2.2. Основания должны рассчитываться по двум группам предельных состояний: первой – по несущей способности и второй – по деформациям.
Основания рассчитываются по деформациям во всех случаях и по несущей способности – в случаях, указанных в п.2.3.
В расчетах оснований следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние поверхностных или подземных вод на физико-механические свойства грунтов).
2.3. Расчет оснований по несущей способности должен производиться в случаях, если:
а) на основание передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и т.п.), в том числе сейсмические;
б) сооружение расположено на откосе или вблизи откоса;
в) основание сложено грунтами, указанными в п.2.61;
г) основание сложено скальными грунтами.
Расчет оснований по несущей способности в случаях, перечисленных в подпунктах “а” и “б”, допускается не производить, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента.
Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует производить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.
2.4. Расчетная схема системы сооружение – основание или фундамент – основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов.
Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.
Нагрузки и воздействия, учитываемые в расчетах оснований
2.5. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания.
Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.
Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете:
а) оснований зданий и сооружений III класса**;
б) общей устойчивости массива грунта основания совместно с сооружением;
в) средних значений деформаций основания;
г) деформаций основания в стадии привязки типового проекта к местным грунтовым условиям.
2.6. Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности – на основное сочетание, а при наличии особых нагрузок и воздействий – на основное и особое сочетание.
При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям – длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными.
2.7. В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов.
2.8. Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций.
2.9. Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете оснований опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.
Нормативные и расчетные значения характеристик грунтов
2.10. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения , удельное сцепление с, модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов и т.п.). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).
Примечание . Далее, за исключением специально оговоренных случаев, под термином “характеристики грунтов” понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.
2.11. Характеристики грунтов природного сложения, а также искусственного происхождения, должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.
2.12. Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75.
ГАРАНТ:
Взамен ГОСТ 20522-75 постановлением Минстроя РФ от 1 августа 1996 г. N 18-58 с 1 января 1997 г. введен в действие ГОСТ 20522-96
2.13. Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов X, определяемых по формуле
где – нормативное значение данной характеристики;
– коэффициент надежности по грунту.
Коэффициент надежности по грунту при вычислении расчетных значений прочностных характеристик (удельного сцепления с, угла внутреннего трения нескальных грунтов и предела прочности на одноосное сжатие скальных грунтов , а также плотности грунта ) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности . Для прочих характеристик грунта допускается принимать .
Примечание. Расчетное значение удельного веса грунта определяется умножением расчетного значения плотности грунта на ускорение свободного падения.
2.14. Доверительная вероятность расчетных значений характеристик грунтов принимается при расчетах оснований по несущей способности , по деформациям .
Доверительная вероятность альфа для расчета оснований опор мостов и труб под насыпями принимается согласно указаниям п.12.4. При соответствующем обосновании для зданий и сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99.
Примечания : 1. Расчетные значения характеристик грунтов, соответствующие различным значениям доверительной вероятности, должны приводиться в отчетах по инженерно-геологическим изысканиям.
2. Расчетные значения характеристик грунтов с, и для расчетов по несущей способности обозначаются , , и , а по деформациям , и .
2.15. Количество определений характеристик грунтов, необходимое для вычисления их нормативных и расчетных значений, должно устанавливаться в зависимости от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и класса здания или сооружения и указываться в программе исследований.
Количество одноименных частных определений для каждого выделенного на площадке инженерно-геологического элемента должно быть не менее шести. При определении модуля деформации по результатам испытаний грунтов в полевых условиях штампом допускается ограничиваться результатами трех испытаний (или двух, если они отклоняются от среднего не более чем на 25%).
2.16. Для предварительных расчетов оснований, а также для окончательных расчетов оснований зданий и сооружений II и III классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определять нормативные и расчетные значения прочностных и деформационных характеристик грунтов по их физическим характеристикам.
Примечания : 1. Нормативные значения угла внутреннего трения , удельного сцепления и модуля деформации Е допускается принимать по табл.1 – 3 рекомендуемого приложения 1. Расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту:
в расчетах оснований по деформациям. гамма_g = 1;
в расчетах оснований по несущей способности:
для удельного сцепления . гамма_g(c) = 1,5;
для угла внутреннего трения песчаных грунтов . гамма_g(фи) = 1,1;
то же, пылевато-глинистых . гамма_g(фи) = 1,15.
2. Для отдельных районов допускается вместо таблиц рекомендуемого приложения 1 пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов.
2.17. При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения, а именно:
наличие или возможность образования верховодки;
естественные сезонные и многолетние колебания уровня подземных вод;
возможное техногенное изменение уровня подземных вод;
степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионную активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.
2.18. Оценка возможных изменений уровня подземных вод на площадке строительства должна выполняться при инженерных изысканиях для зданий и сооружений I и II классов соответственно на срок 25 и 15 лет с учетом возможных естественных сезонных и многолетних колебаний этого уровня (п.2.19), а также степени потенциальной подтопляемости территории (п.2.20). Для зданий и сооружений III класса указанную оценку допускается не выполнять.
2.19. Оценка возможных естественных сезонных и многолетних колебаний уровня подземных вод производится на основе данных многолетних режимных наблюдений по государственной стационарной сети Мингео СССР с использованием результатов краткосрочных наблюдений, в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства.
2.20. Степень потенциальной подтопляемости территории должна оцениваться с учетом инженерно-геологических и гидрогеологических условий площадки строительства и прилегающих территорий, конструктивных и технологических особенностей проектируемых и эксплуатируемых сооружений, в том числе инженерных сетей.
2.21. Для ответственных сооружений при соответствующем обосновании выполняется количественный прогноз изменения уровня подземных вод с учетом техногенных факторов на основе специальных комплексных исследований, включающих как минимум годовой цикл стационарных наблюдений за режимом подземных вод. В случае необходимости для выполнения указанных исследований помимо изыскательской организации должны привлекаться в качестве соисполнителей специализированные проектные или научно-исследовательские институты.
2.22. Если при прогнозируемом уровне подземных вод (пп.2.18 – 2.21) возможны недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т.п., в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:
гидроизоляция подземных конструкций;
мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т.п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т.д.);
мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);
устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т.д.
Выбор одного или комплекса указанных мероприятий должен производиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т.п.
2.23. Если подземные воды или промышленные стоки агрессивны по отношению к материалам заглубленных конструкций или могут повысить коррозионную активность грунтов, должны предусматриваться антикоррозионные мероприятия в соответствии с требованиями СНиП по проектированию защиты строительных конструкций от коррозии.
2.24. При проектировании оснований, фундаментов и других подземных конструкций ниже пьезометрического уровня напорных подземных вод необходимо учитывать давление подземных вод и предусматривать мероприятия, предупреждающие прорыв подземных вод в котлованы, вспучивание дна котлована и всплытие сооружения.
Глубина заложения фундаментов
2.25. Глубина заложения фундаментов должна приниматься с учетом:
назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;
глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;
существующего и проектируемого рельефа застраиваемой территории;
инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);
гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения (пп.2.17 – 2.24);
возможного размыва грунта у опор сооружений, возводимых в руслах рек (мостов, переходов трубопроводов и т.п.);
глубины сезонного промерзания грунтов.
2.26. Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.
2.27. Нормативную глубину сезонного промерзания грунта , м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле
где – безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства – по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;
– величина, принимаемая равной, м, для:
суглинков и глин . - 0,23;
супесей, песков мелких и пылеватых . - 0,28;
песков гравелистых, крупных и средней крупности . - 0,30;
крупнообломочных грунтов . - 0,34.
Значение для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.
2.28. Расчетная глубина сезонного промерзания грунта , м, определяется по формуле
где – нормативная глубина промерзания, определяемая по пп.2.26 и 2.27;
– коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений – по табл.1; для наружных и внутренних фундаментов неотапливаемых сооружений – , кроме районов с отрицательной среднегодовой температурой.
ые в
орых р
если а
не б
чения
табл.1
сстояни
f >= 1,
лее че
коэффиц
значени
от вне
м, зна
до зн
ента k
коэффи
ней гран
ения ко
чения k_
h опред
иента k_h
стены до
ффициента
= 1; при
ляются по
Примечание . В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах.
Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).
2.29. Глубина заложения фундаментов отапливаемых сооружений по условиям недопущения морозного пучения грунтов основания должна назначаться:
а) для наружных фундаментов (от уровня планировки) по табл.2;
б) для внутренних фундаментов – независимо от расчетной глубины промерзания грунтов.
Глубину заложения наружных фундаментов допускается назначать независимо от расчетной глубины промерзания, если:
фундаменты опираются на пески мелкие и специальными исследованиями на данной площадке установлено, что они не имеют пучинистых свойств, а также в случаях, когда специальными исследованиями и расчетами установлено, что деформации грунтов основания при их промерзании и оттаивании не нарушают эксплуатационную пригодность сооружения;
предусмотрены специальные теплотехнические мероприятия, исключающие промерзание грунтов.
Пески мелкие и пылеватые
Супеси с показателем текучести
I_L < 0
То же, при I_L >= 0
Суглинки, глины, а также
крупнообломочные грунты с пылевато-
глинистым заполнителем при
показателе текучести грунта или
заполнителя I_L >= 0,25
глубина заложен
ания d_f, соотв
лжны залегать д
я фундаментов не
тствующие грунты,
глубины не менее
2.30. Глубину заложения наружных и внутренних фундаментов отапливаемых сооружений с холодными подвалами и техническими подпольями (имеющими отрицательную температуру в зимний период) следует принимать по табл.2, считая от пола подвала или технического подполья.
2.31. Глубина заложения наружных и внутренних фундаментов неотапливаемых сооружений должна назначаться по табл.2, при этом глубина исчисляется: при отсутствии подвала или технического подполья – от уровня планировки, а при наличии – от пола подвала или технического подполья.
2.32. В проекте оснований и фундаментов должны предусматриваться мероприятия, не допускающие увлажнения грунтов основания, а также промораживания их в период строительства.
2.33. Фундаменты сооружения или его отсека должны закладываться на одном уровне. При необходимости заложения соседних фундаментов на разных отметках их допустимая разность определяется исходя из условия
где – расстояние между фундаментами в свету;
и – расчетные значения соответственно угла внутреннего трения и удельного сцепления грунта (пп.2.12 – 2.14);
р – среднее давление под подошвой вышерасположенного фундамента от расчетных нагрузок (для расчета основания по несущей способности).
Расчет оснований по деформациям
2.34. Целью расчета оснований по деформациям является ограничение абсолютных или относительных перемещений фундаментов и надфундаментных конструкций такими пределами, при которых гарантируется нормальная эксплуатация сооружения и не снижается его долговечность (вследствие появления недопустимых осадок, подъемов, кренов, изменений проектных уровней и положений конструкций, расстройств их соединений и т.п.). При этом имеется в виду, что прочность и трещиностойкость фундаментов и надфундаментных конструкций проверены расчетом, учитывающим усилия, которые возникают при взаимодействии сооружения с основанием.
Примечание . При проектировании сооружений, расположенных в непосредственной близости от существующих, необходимо учитывать дополнительные деформации оснований существующих сооружений от нагрузок проектируемых сооружений.
2.35*. Деформации основания подразделяются на:
осадки – деформации, происходящие в результате уплотнения грунта под воздействием внешних нагрузок и в отдельных случаях собственного веса грунта, не сопровождающиеся коренным изменением его структуры;
просадки – деформации, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием как внешних нагрузок и собственного веса грунта, так и дополнительных факторов, таких, как, например, замачивание просадочного грунта, оттаивание ледовых прослоек в замерзшем грунте и т.п.;
подъемы и осадки – деформации, связанные с изменением объема некоторых грунтов при изменении их влажности или воздействии химических веществ (набухание и усадка) и при замерзании воды и оттаивании льда в порах грунта (морозное пучение и оттаивание грунта);
оседания – деформации земной поверхности, вызываемые разработкой полезных ископаемых, изменением гидрогеологических условий, понижением уровня подземных вод, карстово-суффозионными процессами и т.п.;
горизонтальные перемещения – деформации, связанные с действием горизонтальных нагрузок на основание (фундаменты распорных систем, подпорные стены и т.д.) или со значительными вертикальными перемещениями поверхности при оседаниях, просадках грунтов от собственного веса и т.п.
провалы – деформации земной поверхности с нарушением сплошности грунтов, образующиеся вследствие обрушения толщи грунтов над карстовыми полостями или горными выработками.
2.36. Деформации основания в зависимости от причин возникновения подразделяются на два вида:
первый – деформации от внешней нагрузки на основание (осадки, просадки, горизонтальные перемещения);
второй – деформации, не связанные с внешней нагрузкой на основание и проявляющиеся в виде вертикальных и горизонтальных перемещений поверхности основания (оседания, просадки грунтов от собственного веса, подъемы и т.п.).
2.37. Расчет оснований по деформациям должен производиться из условия совместной работы сооружения и основания.
Деформации основания допускается определять без учета совместной работы сооружения и основания в случаях, оговоренных в п.2.5.
2.38. Совместная деформация основания и сооружения может характеризоваться:
абсолютной осадкой основания s отдельного фундамента;
средней осадкой основания сооружения ;
относительной неравномерностью осадок двух фундаментов ;
креном фундамента (сооружения) i;
относительным прогибом или выгибом f/L;
кривизной изгибаемого участка сооружения р;
относительным углом закручивания сооружения ;
горизонтальным перемещением фундамента (сооружения) u.
Примечание . Аналогичные характеристики деформаций могут устанавливаться также для других деформаций, указанных в п.2.35.
2.39. Расчет оснований по деформациям производится исходя из условия
где s – совместная деформация основания и сооружения, определяемая расчетом в соответствии с указаниями обязательного приложения 2;
– предельное значение совместной деформации основания и сооружения, устанавливаемое в соответствии с указаниями пп.2.51 – 2.55.
Примечания : 1. В необходимых случаях для оценки напряженно-деформированного состояния конструкций сооружений с учетом длительных процессов и прогноза времени консолидации основания следует производить расчет осадок во времени.
2. Осадки основания, происходящие в процессе строительства (например, осадки от веса насыпей до устройства фундаментов, осадки до омоноличивания стыков строительных конструкций), допускается не учитывать, если они не влияют на эксплуатационную пригодность сооружений.
3. При расчете оснований по деформациям необходимо учитывать возможность изменения как расчетных, так и предельных значений деформаций основания за счет применения мероприятий, указанных в пп.2.67 – 2.71.
2.40. Расчетная схема основания, используемая для определения совместной деформации основания и сооружения, должна выбираться в соответствии с указаниями п.2.4.
Расчет деформаций основания следует, как правило, выполнять, применяя расчетную схему основания в виде:
линейно деформируемого полупространства с условным ограничением глубины сжимаемой толщи (п.6 обязательного приложения 2);
линейно деформируемого слоя, если:
а) в пределах сжимаемой толщи основания , определенной как для линейно деформируемого полупространства, залегает слой грунта с модулем деформации МПа (1000 ) и толщиной , удовлетворяющей условию
где – модуль деформации грунта, подстилающего слой грунта с модулем деформации ;
б) ширина (диаметр) фундамента м и модуль деформации грунтов основания МПа (100 ).
Толщина линейно деформируемого слоя Н в случае “а” принимается до кровли малосжимаемого грунта, в случае “б” вычисляется в соответствии с указаниями п.8 обязательного приложения 2.
Примечание. Схему линейно деформируемого слоя допускается применять для фундаментов шириной м при наличии в пределах сжимаемой толщи слоев грунта с модулем деформации Е < 10 МПа (100 ), если их суммарная толщина не превышает 0,2 Н.
2.41. При расчете деформаций основания с использованием расчетных схем, указанных в п.2.40, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, кПа ( ), определяемого по формуле
где и – коэффициенты условий работы, принимаемые по табл.3;
k – коэффициент, принимаемый равным: k = 1, если прочностные характеристики грунта ( и c) определены непосредственными испытаниями, и k = 1,1, если они приняты по табл.1 – 3 рекомендуемого приложения 1;
, , – коэффициенты, принимаемые по табл.4;
– коэффициент, принимаемый равным:
b – ширина подошвы фундамента, м;
– осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), ( );
– то же, залегающих выше подошвы;
– расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа ( );
– глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле
где – толщина слоя грунта выше подошвы фундамента со стороны подвала, м;
– толщина конструкции пола подвала, м;
– расчетное значение удельного веса конструкции пола подвала, ( );
– глубина подвала – расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом шириной м и глубиной свыше 2 м принимается м, при ширине подвала B > 20 м – ).
Примечания : 1. Формулу (7) допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, принимается .
2. Расчетные значения удельного веса грунтов и материала пола подвала, входящие в формулу (7), допускается принимать равными их нормативным значениям.
3. Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием.
4. Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать на 15%.
5. Если (d – глубина заложения фундамента от уровня планировки) в формуле (7) принимается и .
ой констр
пециально
, в том
ктивной схемой
риспособлены к
числе за счет
Угол внут- реннего трения фи_II, град. |
Коэффициенты | Угол внут- реннего трения фи_II, град. |
Коэффициенты | ||||
M_гамма | М_q | M_c | M_гамма | М_q | M_c | ||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
0 0,01 0,03 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,21 0,23 0,26 0,29 0,32 0,36 0,39 0,43 0,47 0,51 0,56 0,61 |
1,00 1,06 1,12 1,18 1,25 1,32 1,39 1,47 1,55 1,64 1,73 1,83 1,94 2,05 2,17 2,30 2,43 2,57 2,73 2,89 3,06 3,24 3,44 |
3,14 3,23 3,32 3,41 3,51 3,61 3,71 3,82 3,93 4,05 4,17 4,29 4,42 4,55 4,69 4,84 4,99 5,15 5,31 5,48 5,66 5,84 6,04 |
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
0,69 0,72 0,78 0,84 0,91 0,98 1,06 1,15 1,24 1,34 1,44 1,55 1,68 1,81 1,95 2,11 2,28 2,46 2,66 2,88 3,12 3,38 3,66 |
3,65 3,87 4,11 4,37 4,64 4,93 5,25 5,59 5,95 6,34 6,76 7,22 7,71 8,24 8,81 9,44 10,11 10,85 11,64 12,51 13,46 14,50 15,64 |
6,24 6,45 6,67 6,90 7,14 7,40 7,67 7,95 8,24 8,55 8,88 9,22 9,58 9,97 10,37 10,80 11,25 11,73 12,24 12,79 13,37 13,98 14,64 |
2.42. Предварительные размеры фундаментов назначаются по конструктивным соображениям или исходя из табличных значений расчетного сопротивления грунтов основания в соответствии с рекомендуемым приложением 3. Значениями допускается также пользоваться для окончательного назначения размеров фундаментов зданий и сооружений III класса, если основание сложено горизонтальными (уклон не более 0,1), выдержанными по толщине слоями грунта, сжимаемость которых не увеличивается в пределах глубины, равной двойной ширине наибольшего фундамента, считая от его подошвы.
2.43. Расчетное сопротивление R основания, сложенного крупнообломочными грунтами, вычисляется по формуле (7) на основе результатов непосредственных определений прочностных характеристик грунтов.
Если содержание заполнителя превышает 40%, значение R для крупнообломочных грунтов допускается определять по характеристикам заполнителя.
2.44. Расчетное сопротивление грунтов основания R в случае их уплотнения или устройства грунтовых подушек должно определяться исходя из задаваемых проектом расчетных значений физико-механических характеристик уплотненных грунтов.
2.45. Расчетное сопротивление грунтов основания R при прерывистых фундаментах определяется как для ленточных фундаментов по указаниям пп.2.41 – 2.44 с повышением значения R коэффициентом , принимаемым по табл.5.
С угловыми вырезками
ениях е и I_L, к
2.46. При увеличении нагрузок на основание существующих сооружений (например, при реконструкции) расчетное сопротивление грунтов основания должно приниматься в соответствии с данными об их физико-механических свойствах с учетом типа и состояния фундаментов и надфундаментных конструкций сооружения, продолжительностью его эксплуатации, ожидаемых дополнительных осадок при увеличении нагрузок на фундаменты и их влияния на примыкающие сооружения.
2.47. Расчетное сопротивление грунта основания R, вычисленное по формуле (7), может быть повышено в 1,2 раза, если расчетные деформации основания (при давлении, равном R) не превосходят 40% предельных значений (пп.2.51 – 2.55). При этом повышенное давление не должно вызывать деформации основания свыше 50% предельных и превышать значение давления из условия расчета оснований по несущей способности в соответствии с требованиями пп.2.57 – 2.65.
2.48. При наличии в пределах сжимаемой толщи основания на глубине z от подошвы фундамента слоя грунта меньшей прочности, чем прочность грунта вышележащих слоев, размеры фундамента должны назначаться такими, чтобы обеспечивалось условие
где и – вертикальные напряжения в грунте на глубине z от подошвы фундамента соответственно дополнительное от нагрузки на фундамент и от собственного веса грунта, кПа ( );
– расчетное сопротивление грунта пониженной прочности на глубине z, кПа ( ), вычисленное по формуле (7) для условного фундамента шириной , м, равной:
здесь N – вертикальная нагрузка на основание от фундамента;
l и b – соответственно длина и ширина фундамента.
2.49. Давление на грунт у края подошвы внецентренно нагруженного фундамента (вычисленное в предположении линейного распределения давления под подошвой фундамента при нагрузках, принимаемых для расчета оснований по деформациям), как правило, должно определяться с учетом заглубления фундамента в грунт и жесткости надфундаментных конструкций. Краевое давление при действии изгибающего момента вдоль каждой оси фундамента не должно превышать 1,2R и в угловой точке – 1,5R (здесь R – расчетное сопротивление грунта основания, определяемое в соответствии с требованиями пп.2.41 – 2.48).
Примечание . При расчете оснований фундаментов мостов на внецентренную нагрузку следует руководствоваться требованиями СНиП по проектированию мостов и труб.
2.50. Крен отдельных фундаментов или сооружений в целом должен вычисляться с учетом момента в уровне подошвы фундамента, влияния соседних фундаментов, нагрузок на прилегающие площади и неравномерности сжимаемости основания.
При определении кренов фундаментов, кроме того, как правило, необходимо учитывать заглубление фундамента, жесткость надфундаментной конструкции, а также возможность увеличения эксцентриситета нагрузки из-за наклона фундамента (сооружения).
2.51. Предельные значения совместной деформации основания и сооружения устанавливаются исходя из необходимости соблюдения:
а) технологических или архитектурных требований к деформации сооружения (изменение проектных уровней и положений сооружения в целом, отдельных его элементов и оборудования, включая требования к нормальной работе лифтов, кранового оборудования, подъемных устройств элеваторов и т.п.) – ;
б) требований к прочности, устойчивости и трещиностойкости конструкций, включая общую устойчивость сооружения – .
2.52. Предельные значения совместной деформации основания и сооружения по технологическим или архитектурным требованиям должны устанавливаться соответствующими нормами проектирования зданий и сооружений, правилами технической эксплуатации оборудования или заданием на проектирование с учетом в необходимых случаях рихтовки оборудования в процессе эксплуатации.
Проверка соблюдения условия производится при разработке типовых и индивидуальных проектов в составе расчетов сооружения во взаимодействии с основанием после соответствующих расчетов конструкций сооружения по прочности, устойчивости и трещиностойкости.
2.53. Предельные значения совместной деформации основания и сооружения по условиям прочности, устойчивости и трещиностойкости конструкций должны устанавливаться при проектировании на основе расчета сооружения во взаимодействии с основанием.
Значение допускается не устанавливать для сооружений значительной жесткости и прочности (например, зданий башенного типа, домен), а также для сооружений, в конструкциях которых не возникают усилия от неравномерных осадок основания (например, различного рода шарнирных систем).
2.54. При разработке типовых проектов сооружений на основе значений и следует, как правило, устанавливать следующие критерии допустимости применения этих проектов, упрощающие расчет оснований по деформациям при их привязке к местным грунтовым условиям:
а) предельные значения степени изменчивости сжимаемости грунтов основания , соответствующие различным значениям среднего модуля деформации грунтов в пределах плана сооружения или средней осадки основания ;
б) предельную неравномерность деформаций основания , соответствующую нулевой жесткости сооружения;
в) перечень грунтов с указанием их простейших характеристик свойств, а также характера напластований, при наличии которых не требуется выполнять расчет оснований по деформациям.
Примечания : 1. Степень изменчивости сжимаемости основания определяется отношением наибольшего значения приведенного по глубине модуля деформации грунтов основания в пределах плана сооружения к наименьшему значению.
2. Среднее значение модуля деформации грунтов основания в пределах плана сооружения определяется как средневзвешенное (с учетом изменения сжимаемости грунтов по глубине и в плане сооружения).
2. Жилые и общественные здания
Прямоугольной формы в плане без
перепадов по высоте с полным
каркасом и бескаркасные с несущими
стенами из кирпича, крупных блоков
или панелей:
а) протяженные многосекционные
высотой до 9 этажей включительно;
б) несблокированные башенного
типа высотой до 14 этажей
включительно
2.55. Предельные значения деформаций оснований допускается принимать согласно рекомендуемому приложению 4, если конструкции сооружения не рассчитаны на усилия, возникающие в них при взаимодействии с основанием, и в задании на проектирование не установлены значения (пп.2.51, 2.52).
2.56. Расчет деформаций основания допускается не выполнять, если среднее давление под фундаментами проектируемого сооружения не превышает расчетного сопротивления грунтов основания (пп.2.41 – 2.48) и выполняется одно из следующих условий:
а) степень изменчивости сжимаемости основания меньше предельной по п.2.54, а;
б) инженерно-геологические условия площадки строительства соответствуют области применения типового проекта (см. п.2.54, в);
в) грунтовые условия площадки строительства сооружений, перечисленных в табл.6, относятся к одному из вариантов, указанных в этой таблице.
Расчет оснований по несущей способности
2.57. Целью расчета оснований по несущей способности являются обеспечение прочности и устойчивости оснований, а также недопущение сдвига фундамента по подошве и его опрокидывания. Принимаемая в расчете схема разрушения основания (при достижении им предельного состояния) должна быть как статически, так и кинематически возможна для данного воздействия и конструкции фундамента или сооружения.
2.58. Расчет оснований по несущей способности производится исходя из условия
где F – расчетная нагрузка на основание, определяемая по указаниям пп.2.5 – 2.8;
– сила предельного сопротивления основания;
– коэффициент условий работы, принимаемый:
для песков, кроме пылеватых . гамма_c = 1,0
для песков пылеватых, а также пылевато-глинистых
грунтов в стабилизированном состоянии . гамма_c = 0,9
для пылевато-глинистых грунтов в нестабилизированном
состоянии . гамма_c = 0,85
для скальных грунтов:
невыветрелых и слабовыветрелых . гамма_c = 1,0
выветрелых . гамма_c = 0,9
сильновыветрелых . гамма_c = 0,8
– коэффициент надежности по назначению сооружения, принимаемый равным 1,2; 1,15 и 1,10 соответственно для зданий и сооружений I, II и III классов.
2.59. Вертикальная составляющая силы предельного сопротивления основания, сложенного скальными грунтами , кН(тс), независимо от глубины заложения фундамента вычисляется по формуле
где – расчетное значение предела прочности на одноосное сжатие скального грунта, кПа ( );
b’ и l’ – соответственно приведенные ширина и длина фундамента, м, вычисляемые по формулам:
здесь и – соответственно эксцентриситеты приложения равнодействующей нагрузок в направлении поперечной и продольной осей фундамента, м.
2.60. Сила предельного сопротивления основания, сложенного нескальными грунтами в стабилизированном состоянии, должна определяться исходя из условия, что соотношение между нормальными и касательными напряжениями по всем поверхностям скольжения, соответствующее предельному состоянию основания, подчиняется зависимости
где и – соответственно расчетные значения угла внутреннего трения и удельного сцепления грунта (пп.2.12 – 2.14).
2.61. Сила предельного сопротивления основания, сложенного медленно уплотняющимися водонасыщенными пылевато-глинистыми и биогенными грунтами (при степени влажности и коэффициенте консолидации ), должна определяться с учетом возможного нестабилизированного состояния грунтов основания за счет избыточного давления в поровой воде u. При этом соотношение между нормальными и касательными напряжениями принимается по зависимости
где и – соответствуют стабилизированному состоянию грунтов основания.
Избыточное давление в поровой воде допускается определять методами фильтрационной консолидации грунтов с учетом скорости приложения нагрузки на основание. При соответствующем обосновании (высокие темпы возведения сооружения или нагружения его эксплуатационными нагрузками, отсутствие в основании дренирующих слоев грунта или дренирующих устройств) допускается в запас надежности принимать избыточное давление в поровой воде равным нормальному напряжению по площадкам скольжения ( ) или принимать значения и соответствующими нестабилизированному состоянию грунтов основания.
2.62. Вертикальную составляющую силы предельного сопротивления основания, сложенного нескальными грунтами в стабилизированном состоянии, допускается определять по формуле (16), если фундамент имеет плоскую подошву и грунты основания ниже подошвы однородны до глубины не менее ее ширины, а в случае различной вертикальной пригрузки с разных сторон фундамента интенсивность большей из них не превышает 0,5R (R – расчетное сопротивление грунта основания, определяемое в соответствии с пп.2.41 – 2.48):
где b’ и l’ – обозначения те же, что в формуле (12), причем символом b обозначена сторона фундамента, в направлении которой предполагается потеря устойчивости основания;
, , – безразмерные коэффициенты несущей способности, определяемые по табл.7 в зависимости от расчетного значения угла внутреннего трения грунта и угла наклона к вертикали равнодействующей внешней нагрузки на основание F в уровне подошвы фундамента;
и – расчетные значения удельного веса грунтов, , находящихся в пределах возможной призмы выпирания соответственно ниже и выше подошвы фундамента (при наличии подземных вод определяются с учетом взвешивающего действия воды);
– расчетное значение удельного сцепления грунта, кПа ;
d – глубина заложения фундамента, м (в случае неодинаковой вертикальной пригрузки с разных сторон фундамента принимается значение d, соответствующее наименьшей пригрузке, например, со стороны подвала);
, , – коэффициенты формы фундамента, определяемые по формулам:
l и b – соответственно длина и ширина подошвы фундамента, принимаемые в случае внецентренного приложения равнодействующей нагрузки равными приведенным значениям l’ и b’, определяемым по формулам (13).
Если , в формулах (17) следует принимать .
Угол наклона к вертикали равнодействующей внешней нагрузки на основание определяется из условия
где и – соответственно горизонтальная и вертикальная составляющие внешней нагрузки на основание F в уровне подошвы фундамента.
Расчет по формуле (16) допускается выполнять, если соблюдается условие
Примечания: 1. При использовании формулы (16) в случае неодинаковой пригрузки с разных сторон фундамента в составе горизонтальных нагрузок следует учитывать активное давление грунта.
2. Если условие (19) не выполняется, следует производить расчет фундамента на сдвиг по подошве (п.2.63).
2.63. Расчет фундамента на сдвиг по подошве производится исходя из условия
где и – суммы проекций на плоскость скольжения соответственно расчетных сдвигающих и удерживающих сил, определяемых с учетом активного и пассивного давлений грунта на боковые грани фундамента;
и – обозначения те же, что в формуле (11).
2.64. Расчет оснований по несущей способности допускается выполнять графоаналитическими методами (круглоцилиндрических или ломаных поверхностей скольжения), если:
а) основание неоднородно по глубине;
б) пригрузка основания с разных сторон фундамента неодинакова, причем интенсивность большей из них превышает 0,5R (R – расчетное сопротивление грунта основания, определяемое в соответствии с пп.2.41-2.48);
в) сооружение расположено на откосе или вблизи откоса;
г) возможно возникновение нестабилизированного состояния грунтов основания, за исключением случаев, указанных в п.2.65.
2.65. Предельное сопротивление основания (однородного ниже подошвы фундамента до глубины не менее 0,75b), сложенного медленно уплотняющимися водонасыщенными грунтами (п.2.61), допускается определять следующим образом.
Вертикальную составляющую силы предельного сопротивления основания ленточного фундамента , кН/м (тс/м), – по формуле
где b’ – обозначение то же, что в формуле (12), м;
q – пригрузка с той стороны фундамента, в направлении которой действует горизонтальная составляющая нагрузки, кПа ( );
– обозначение то же, что в формуле (14), кПа ( );
– угол, рад, определяемый по формуле
здесь – горизонтальная составляющая расчетной нагрузки на 1 м длины фундамента, определяемая с учетом активного давления грунта, кН/м (тс/м).
Формулу (21) допускается использовать, если выполняется условие
Силу предельного сопротивления основания прямоугольного фундамента ( ) при действии на него вертикальной нагрузки допускается определять по формуле (16), полагая и .
Во всех случаях, если на фундамент действуют горизонтальные нагрузки и основание сложено грунтами в нестабилизированном состоянии, следует производить расчет фундамента на сдвиг по подошве (п.2.63).
2.66. Устойчивость фундаментов на действие сил морозного пучения грунтов необходимо проверять, если основание сложено пучинистыми грунтами.
Мероприятия по уменьшению деформаций оснований и влияния их на сооружения
2.67. Для выполнения требований расчета оснований по предельным состояниям, кроме возможности и целесообразности изменения размеров фундаментов в плане или глубины их заложения (включая прорезку грунтов с неудовлетворительными свойствами), введения дополнительных связей, ограничивающих перемещения фундаментов, применения других типов фундаментов, изменения нагрузок на основание и т.д., следует рассмотреть необходимость применения:
а) мероприятий по предохранению грунтов основания от ухудшения их свойств (п.2.68);
б) мероприятий, направленных на преобразование строительных свойств грунтов (п.2.69);
в) конструктивных мероприятий, уменьшающих чувствительность сооружений к деформациям основания (п.2.70).
При проектировании следует также учитывать возможность регулирования усилий в конструкциях сооружения, возникающих при его взаимодействии с основанием (п.2.71).
Выбор одного или комплекса мероприятий должен производиться с учетом требований пп.1.1 и 2.1.
2.68. К мероприятиям, предохраняющим грунты основания от ухудшения их строительных свойств, относятся:
а) водозащитные мероприятия на площадках, сложенных грунтами, чувствительными к изменению влажности (соответствующая компоновка генеральных планов, вертикальная планировка территории, обеспечивающая сток поверхностных вод, устройство дренажей, противофильтрационных завес и экранов, прокладка водоводов в специальных каналах или размещение их на безопасных расстояниях от сооружений, контроль за возможными утечками воды и т.п.);
б) защита грунтов основания от химически активных жидкостей, способных привести к просадкам, набуханию, активизации карстово-суффозионных явлений, повышению агрессивности подземных вод и т.п.;
в) ограничение источников внешних воздействий (например, вибраций);
г) предохранительные мероприятия, осуществляемые в процессе строительства сооружений (сохранение природной структуры и влажности грунтов, соблюдение технологии устройства оснований, фундаментов, подземных и надземных конструкций, не допускающей изменения принятой в проекте схемы и скорости передачи нагрузки на основание, в особенности при наличии в основании медленно консолидирующихся грунтов и т.п.).
2.69. Преобразование строительных свойств грунтов основания (устройство искусственных оснований) достигается:
а) уплотнением грунтов (трамбованием тяжелыми трамбовками, устройством грунтовых свай, вытрамбовыванием котлованов под фундаменты, предварительным замачиванием грунтов, использованием энергии взрыва, глубинным гидровиброуплотнением, вибрационными машинами, катками и т.п.);
б) полной или частичной заменой в основании (в плане и по глубине) грунтов с неудовлетворительными свойствами подушками из песка, гравия, щебня и т.п.;
в) устройством насыпей (отсыпкой или гидронамывом);
г) закреплением грунтов (химическим, электрохимическим, буросмесительным, термическим и другими способами);
д) введением в грунт специальных добавок (например, засолением грунта или пропиткой его нефтепродуктами для ликвидации пучинистых свойств);
е) армированием грунта (введением специальных пленок, сеток и т.п.).
2.70. Конструктивные мероприятия, уменьшающие чувствительность сооружений к деформациям основания, включают:
а) рациональную компоновку сооружения в плане и по высоте;
б) повышение прочности и пространственной жесткости сооружений, достигаемое усилением конструкций, в особенности конструкций фундаментно-подвальной части, в соответствии с результатами расчета сооружения во взаимодействии с основанием (введение дополнительных связей в каркасных конструкциях, устройство железобетонных или армокаменных поясов, разрезка сооружений на отсеки и т.п.);
в) увеличение податливости сооружений (если это позволяют технологические требования) за счет применения гибких или разрезных конструкций;
г) устройство приспособлений для выравнивания конструкций сооружения и рихтовки технологического оборудования.
Примечание . Габариты приближения к строительным конструкциям подвижного технологического оборудования (мостовых кранов, лифтов и т.п.) должны обеспечивать их нормальную эксплуатацию с учетом возможных деформаций основания.
2.71. К мероприятиям, позволяющим уменьшить усилия в конструкциях сооружения при взаимодействии его с основанием, относятся:
размещение сооружения на площади застройки с учетом ее инженерно-геологического строения и возможных источников вредных влияний (линз слабых грунтов, старых горных выработок, карстовых полостей, внешних водоводов и т.п.);
применение соответствующих конструкций фундаментов (например, фундаментов с малой боковой поверхностью на подрабатываемых территориях и при наличии в основании пучинистых грунтов);
засыпка пазух и устройство подушек под фундаментами из материалов, обладающих малым сцеплением и трением, применение специальных антифрикционных покрытий, отрывка временных компенсационных траншей для уменьшения усилий от горизонтальных деформаций оснований (например, в районах горных выработок);
регулирование сроков замоноличивания стыков сборных и сборно-монолитных конструкций;
обоснованная скорость и последовательность возведения отдельных частей сооружения.
3. Особенности проектирования оснований сооружений, возводимых на просадочных грунтах
3.1. Основания, сложенные просадочными грунтами, должны проектироваться с учетом их особенности, заключающейся в том, что при повышении влажности выше определенного уровня они дают дополнительные деформации – просадки от внешней нагрузки и (или) собственного веса грунта.
3.2. При проектировании оснований, сложенных просадочными грунтами, следует учитывать возможность повышения их влажности за счет:
а) замачивания грунтов – сверху из внешних источников и (или) снизу при подъеме уровня подземных вод;
б) постепенного накопления влаги в грунте вследствие инфильтрации поверхностных вод и экранирования поверхности.
Расчетным состоянием просадочных грунтов по влажности является:
при возможности их замачивания – полное водонасыщение ( );
при невозможности их замачивания – установившееся значение влажности , принимаемое равным природной влажности w, если , и влажности на границе раскатывания, если .
3.3. Просадочные грунты характеризуются:
относительной просадочностью – относительным сжатием грунтов при заданном давлении после их замачивания;
начальным просадочным давлением – минимальным давлением, при котором проявляются просадочные свойства грунтов при их полном водонасыщении;
начальной просадочной влажностью – минимальной влажностью, при которой проявляются просадочные свойства грунтов.
Значения и , определяются в соответствии с требованиями обязательного приложения 2.
3.4. При проектировании оснований, сложенных просадочными грунтами, должны учитываться:
а) просадки от внешней нагрузки , происходящие в пределах верхней зоны просадки от подошвы фундамента до глубины, где суммарные вертикальные напряжения от внешней нагрузки и собственного веса грунта равны начальному просадочному давлению или сумма указанных напряжений минимальна;
б) просадки от собственного веса грунта , происходящие в нижней зоне просадки, начиная с глубины, где суммарные вертикальные напряжения превышают начальное просадочное давление или сумма вертикальных напряжений от собственного веса грунта и внешней нагрузки минимальна, и до нижней границы просадочной толщи;
в) неравномерность просадки грунтов ;
г) горизонтальные перемещения основания в пределах криволинейной части просадочной воронки при просадке грунтов от собственного веса.
Примечание . Просадки грунтов учитываются при относительной просадочности и определяются и соответствии с указаниями обязательного приложения 2.
3.5. При определении просадок грунтов и их неравномерности следует учитывать: инженерно-геологическое строение площадки; физико-механические характеристики грунтов основания и их неоднородность; размеры, глубину заложения и взаимное расположение фундаментов; нагрузки на фундаменты и прилегающие площади; конструктивные особенности сооружения, в частности наличие тоннелей, подвалов под частью сооружения и т.п.; характер планировки территории (наличие выемок и срезки или насыпей и подсыпок, которые оказывают влияние на напряженное состояние грунтов основания, а также на вид и размер просадок); возможные виды, размеры и места расположения источников замачивания грунтов (п.3.2 а); дополнительные нагрузки на глубокие фундаменты, уплотненные и закрепленные массивы от сил негативного трения, возникающих при просадках грунтов от собственного веса.
Кроме того, необходимо учитывать, что при замачивании сверху больших площадей (ширина замачиваемой площади равна или превышает размер просадочной толщи ) и замачивании снизу за счет подъема уровня подземных вод полностью проявляется просадка от собственного веса , а при замачивании сверху малых площадей ( ) проявляется лишь только часть ее (см. п.17 обязательного приложения 2).
Примечание . При определении неравномерности просадок грунтов следует учитывать возможные наиболее неблагоприятные виды и места расположения источников замачивания по отношению к рассчитываемому фундаменту или сооружению в целом.
3.6. Грунтовые условия площадок, сложенных просадочными грунтами, в зависимости от возможности проявления просадки грунтов от собственного веса, подразделяются на два типа:
I тип – грунтовые условия, в которых возможна в основном просадка грунтов от внешней нагрузки, а просадка грунтов от собственного веса отсутствует или не превышает 5 см;
II тип – грунтовые условия, в которых помимо просадки грунтов от внешней нагрузки возможна их просадка от собственного веса и размер ее превышает 5 см.
3.7. Расчет оснований, сложенных просадочными грунтами, производится в соответствии с требованиями разд.2.
При этом деформации основания определяются суммированием осадок и просадок. Осадки основания определяются без учета просадочных свойств грунтов исходя из деформационных характеристик грунтов при установившейся влажности, а просадки – в соответствии с требованиями пп.3.2 – 3.5.
3.8. При проектировании оснований, сложенных просадочными грунтами, в случае их возможного замачивания (п.3.2, а) должны предусматриваться мероприятия, исключающие или снижающие до допустимых пределов просадки оснований и (или) уменьшающие их влияние на эксплуатационную пригодность сооружений в соответствии с указаниями пп.3.12 и 3.13.
В случае невозможности замачивания основания в течение всего срока эксплуатации сооружения (с учетом его возможной реконструкции) просадочные свойства грунтов допускается не учитывать, однако в расчетах должны использоваться физико-механические характеристики грунтов, соответствующие установившейся влажности (п.3.2).
3.9. Расчетное сопротивление грунта основания при возможном замачивании просадочных грунтов (п.3.2, а) принимается равным:
а) начальному просадочному давлению при устранении возможности просадки грунтов от внешней нагрузки путем снижения давления под подошвой фундамента;
б) значению, вычисленному по формуле (7) с использованием расчетных значений прочностных характеристик ( и ) в водонасыщенном состоянии.
При невозможности замачивания просадочных грунтов расчетное сопротивление грунта основания R определяется по формуле (7) с использованием прочностных характеристик этих грунтов при установившейся влажности (п.3.2).
3.10. Предварительные размеры фундаментов сооружений, возводимых на просадочных грунтах, назначаются исходя из расчетных сопротивлений основания , принимаемых по табл.4 рекомендуемого приложения 3.
Указанными значениями допускается пользоваться также для назначения окончательных размеров фундаментов зданий и сооружений III класса, в которых отсутствует мокрый технологический процесс.
3.11. Требования расчета оснований по деформациям в грунтовых условиях I типа считаются удовлетворенными, если в пределах всей просадочной толщи сумма вертикальных напряжений от внешней нагрузки и от собственного веса грунта не превышает начального просадочного давления .
3.12*. При возможности замачивания грунтов основания (п.3.2) следует предусматривать одно из мероприятий:
а) устранение просадочных свойств грунтов в пределах всей просадочной толщи (пп.2.69 и 3.13);
б) прорезку просадочной толщи глубокими фундаментами, в том числе свайными и массивами из закрепленного грунта (пп.2.67 и 3.14);
в) комплекс мероприятий, включающий частичное устранение просадочных свойств грунтов, водозащитные и конструктивные мероприятия (пп.2.67 – 2.71).
В грунтовых условиях II типа наряду с устранением просадочных свойств грунтов или прорезкой просадочной толщи глубокими фундаментами должны предусматриваться водозащитные мероприятия, а также соответствующая компоновка генплана.
Выбор мероприятий должен производиться с учетом типа грунтовых условий, вида возможного замачивания, расчетной просадки, взаимосвязи проектируемых сооружений с соседними объектами и коммуникациями в соответствии с требованиями п.1.1.
Примечания : 1. Устранение просадочных свойств грунтов (подпункт “а”) в грунтовых условиях I типа допускается выполнять только в пределах части верхней зоны просадки, но не менее 2/3 ее высоты, если конструкции сооружения рассчитаны на возможные деформации основания, а просадки и их неравномерность не превышают 50% предельных деформаций основания для данного сооружения.
2*. Значения предельных деформаций оснований, приведенные в рекомендуемом приложении 4, не распространяются на сооружения, запроектированные с применением комплекса мероприятий по п.3.12, в. Предельный крен жилых и общественных зданий при применении комплекса мероприятий допускается принимать равным:
– для зданий, не оборудованных лифтами, а также если проектом предусмотрены специальные мероприятия по рихтовке направляющих лифтовых шахт;
– если указанные мероприятия не предусмотрены.
3.13. Устранение просадочных свойств грунтов достигается:
а) в пределах верхней зоны просадки или ее части уплотнением тяжелыми трамбовками, устройством грунтовых подушек, вытрамбовыванием котлованов, в том числе с устройством уширения из жесткого материала, химическим или термическим закреплением;
б) в пределах всей просадочной толщи – глубинным уплотнением грунтовыми сваями, предварительным замачиванием грунтов основания, в том числе с глубинными взрывами, химическим или термическим закреплением.
3.14. При проектировании глубоких фундаментов следует учитывать:
в грунтовых условиях I типа – сопротивление грунта по боковой поверхности фундаментов;
в грунтовых условиях II типа – негативное трение грунта по боковой поверхности фундаментов, возникающее при просадке грунтов от собственного веса.
4. Особенности проектирования оснований сооружений, возводимых на набухающих грунтах
4.1. Основания, сложенные набухающими грунтами, должны проектироваться с учетом способности таких грунтов при повышении влажности увеличиваться в объеме – набухать. При последующем понижении влажности у набухающих грунтов происходит обратный процесс – усадка.
Необходимо учитывать, что способностью набухать при увеличении влажности обладают некоторые виды шлаков (например, шлаки электроплавильных производств), а также обычные пылевато-глинистые грунты (ненабухающие при увеличении влажности), если они замачиваются химическими отходами производств (например, растворами серной кислоты).
4.2. Набухающие грунты характеризуются давлением набухания , влажностью набухания , относительным набуханием при заданном давлении и относительной усадкой при высыхании .
Указанные характеристики определяются в соответствии с требованиями обязательного приложения 2.
4.3. При проектировании оснований, сложенных набухающими грунтами, следует учитывать возможность:
набухания этих грунтов за счет подъема уровня подземных вод или инфильтрации – увлажнения грунтов производственными или поверхностными водами;
набухания за счет накопления влаги под сооружениями в ограниченной по глубине зоне вследствие нарушения природных условий испарения при застройке и асфальтировании территории (экранирование поверхности);
набухания и усадки грунта в верхней части зоны аэрации – за счет изменения водно-теплового режима (сезонных климатических факторов);
усадки за счет высыхания от воздействия тепловых источников.
Примечание . При проектировании заглубленных частей сооружений должны учитываться горизонтальные давления, возникающие при набухании и усадке грунтов.
4.4. Основания, сложенные набухающими грунтами, должны рассчитываться в соответствии с требованиями разд.2.
Деформации основания в результате набухания или усадки грунта должны определяться путем суммирования деформаций отдельных слоев основания согласно указаниям обязательного приложения 2.
При определении деформаций основания осадка его от внешней нагрузки и возможная осадка от уменьшения влажности набухающего грунта должны суммироваться. Подъем основания в результате набухания грунта определяется в предположении, что осадки основания от внешней нагрузки стабилизировались.
Предельные значения деформаций, вызываемых набуханием (усадкой) грунтов, допускается принимать в соответствии с указаниями рекомендуемого приложения 4 с учетом требований п.2.55.
4.5. Нормативные значения относительного набухания и относительной усадки определяются по результатам лабораторных испытаний с учетом указанных в п.4.3 причин набухания или усадки.
Расчетные значения характеристик и допускается принимать равными нормативным, полагая в формуле (1) коэффициент надежности по грунту .
4.6. При расчетных деформациях основания, сложенного набухающими грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с указаниями пп.2.67 – 2.71:
предварительное замачивание основания в пределах всей или части толщи набухающих грунтов;
применение компенсирующих песчаных подушек;
полная или частичная замена слоя набухающего грунта ненабухающим;
полная или частичная прорезка фундаментами слоя набухающего грунта.
5. Особенности проектирования оснований сооружений, возводимых на водонасыщенных биогенных грунтах и илах
5.1. Основания, сложенные водонасыщенными биогенными грунтами (заторфованными, торфами и сапропелями) и илами или включающие эти грунты, должны проектироваться с учетом их большой сжимаемости, медленного развития осадок во времени и возможности в связи с этим возникновения нестабилизированного состояния, существенной изменчивости и анизотропии прочностных, деформационных и фильтрационных характеристик и изменения их в процессе консолидации основания, а также значительной тиксотропии илов.
Следует учитывать также, что подземные воды в биогенных грунтах и илах, как правило, сильно агрессивны к материалам подземных конструкций.
5.2. Деформационные, прочностные и фильтрационные характеристики биогенных грунтов и илов должны определяться при давлении или в диапазоне давлений, соответствующих напряженному состоянию основания проектируемого сооружения.
Характеристики биогенных грунтов и илов должны устанавливаться при испытаниях образцов грунта в вертикальном и горизонтальном направлениях.
5.3. Расчет оснований, сложенных биогенными грунтами и илами, должен производиться в соответствии с требованиями разд.2 с учетом скорости передачи нагрузки на основание, изменения эффективных напряжений в грунте в процессе консолидации основания, анизотропии свойств грунтов. При этом допускается использовать методы теории линейной консолидации грунтов.
Примечание . Анизотропию свойств биогенных грунтов и илов допускается не учитывать, если значения характеристик для вертикального и горизонтального направлений отличаются не более чем на 40%.
5.4. Опирание фундаментов непосредственно на поверхность сильнозаторфованных грунтов, торфов, слабоминеральных сапропелей и илов не допускается.
5.5. При расчетных деформациях основания, сложенного биогенными грунтами и илами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с указаниями пп.2.67 – 2.71:
полная или частичная прорезка слоев биогенных грунтов и илов глубокими фундаментами;
полная или частичная замена биогенного грунта или ила песком, гравием, щебнем и т.д.;
уплотнение грунтов временной или постоянной пригрузкой основания сооружения или всей площадки строительства насыпным (намывным) грунтом или другим материалом (с устройством фильтрующего слоя или дрен при необходимости ускорения процесса консолидации основания);
закрепление илов буросмесительным способом.
5.6. Проектирование пригрузки должно производиться с учетом требований п.5.3. При этом должны быть установлены толщина, размеры в плане пригрузочного слоя и время, необходимые для достижения заданной степени консолидации основания, а также конечная осадка основания под пригрузкой.
6. Особенности проектирования оснований сооружений, возводимых на элювиальных грунтах
6.1. Основания, сложенные элювиальными грунтами – продуктами выветривания скальных пород, оставшимися на месте своего образования и сохранившими в той или иной степени структуру и текстуру исходных пород, должны проектироваться с учетом:
их значительной неоднородности по глубине и в плане из-за наличия грунтов с большим различием их прочностных и деформационных характеристик – скальных разной степени выветрелости и различных типов нескальных грунтов;
склонности к снижению прочности элювиальных грунтов (особенно крупнообломочных и сильновыветрелых скальных) во время их пребывания в открытых котлованах;
возможности перехода в плывунное состояние элювиальных супесей и пылеватых песков в случае их водонасыщения в период устройства котлованов и фундаментов;
возможным наличием просадочных свойств у элювиальных пылеватых песков с коэффициентом пористости е > 0,6 и степенью влажности .
6.2. Возможность и степень снижения прочности элювиальных грунтов основания во время пребывания их открытыми в котловане должны устанавливаться опытным путем в полевых условиях. Допускается проводить определения в лабораторных условиях на специально отобранных образцах (монолитах) грунта.
Для предварительной оценки возможного снижения прочности элювиальных грунтов допускаются косвенные методы, учитывающие изменение в течение заданного периода времени: плотности скальных грунтов; удельного сопротивления пенетрации пылевато-глинистых грунтов; содержания частиц размером менее 0,1 мм в песчаных и менее 2 мм в крупнообломочных грунтах.
6.3. Расчет оснований, сложенных элювиальными грунтами, должен производиться в соответствии с требованиями разд.2. Если элювиальные грунты являются просадочными, следует учитывать требования разд.3.
6.4. При расчетных деформациях основания, сложенного элювиальными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с указаниями пп.2.67 – 2.71:
устройство уплотненных грунтовых распределительных подушек из песка, гравия, щебня или крупнообломочных грунтов с обломками исходных горных пород, в частности при неровной поверхности скальных грунтов;
удаление из верхней зоны основания включений скальных грунтов, полную или частичную замену рыхлого заполнения “карманов” и “гнезд” выветривания в скальных грунтах щебнем, гравием или песком с уплотнением.
6.5. В проекте оснований и фундаментов должна предусматриваться защита элювиальных грунтов от разрушения атмосферными воздействиями и водой в период устройства котлованов. Для этой цели следует применять водозащитные мероприятия, не допускать перерывы в устройстве оснований и последующем возведении фундаментов; предусматривать недобор грунта в котловане; применять взрывной способ разработки скальных грунтов лишь при условии мелкошпуровой отпалки.
7. Особенности проектирования оснований сооружений, возводимых на засоленных грунтах
7.1. Основания, сложенные засоленными грунтами, должны проектироваться с учетом их особенностей, обусловливающих:
образование при длительной фильтрации воды и выщелачивании солей суффозионной осадки ;
изменение в процессе выщелачивания солей физико-механических свойств грунта, сопровождающееся, как правило, снижением его прочностных характеристик;
набухание или просадку грунтов при замачивании;
повышенную агрессивность подземных вод к материалам подземных конструкций за счет растворения солей, содержащихся в грунте.
7.2. Засоленные грунты характеризуются относительным суффозионным сжатием , определяемым, как правило, полевыми испытаниями статической нагрузкой с длительным замачиванием, а для детального изучения отдельных участков строительной площадки – дополнительно лабораторными методами (компрессионно-фильтрационными испытаниями).
При наличии результатов изысканий и опыта строительства в аналогичных инженерно-геологических условиях относительное суффозионное сжатие допускается определять только лабораторными методами.
7.3. Нормативное значение следует определять в соответствии с требованиями обязательного приложения 2.
Расчетное значение допускается принимать равным нормативному значению, полагая в формуле (1) коэффициент надежности по грунту .
7.4. Расчет оснований, сложенных засоленными грунтами, должен производиться в соответствии с требованиями разд.2. Если засоленные грунты являются просадочными или набухающими, следует учитывать соответственно требования разд.3 и 4.
Деформации основания необходимо определять с учетом осадки от внешней нагрузки, просадки, набухания или усадки и суффозионной осадки.
Суффозионную осадку следует определять в соответствии с указаниями обязательного приложения 2.
При отсутствии возможности длительного замачивания грунтов и выщелачивания солей деформации основания определяются как для незасоленных грунтов исходя из деформационных характеристик грунтов при полном водонасыщении.
7.5. Расчетное сопротивление R основания, сложенного засоленными грунтами, при возможности длительного замачивания грунтов и выщелачивания солей вычисляется по формуле (7) с использованием расчетных значений прочностных характеристик ( и ), полученных для грунтов в водонасыщенном состоянии после выщелачивания солей.
При невозможности длительного замачивания грунтов и выщелачивания солей расчетное сопротивление основания следует определять по формуле (7) с использованием прочностных характеристик, полученных для засоленных грунтов в водонасыщенном состоянии.
7.6. При расчетных деформациях основания, сложенного засоленными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться водозащитные мероприятия и в случае необходимости следующие мероприятия в соответствии с указаниями пп.2.67 – 2.71:
частичная или полная срезка засоленных грунтов с устройством подушки из пылевато-глинистых грунтов;
прорезка толщи засоленных грунтов глубокими фундаментами;
закрепление или уплотнение грунтов;
предварительное рассоление грунтов;
комплекс мероприятий, включающий водозащитные и конструктивные мероприятия, а также устройство грунтовой подушки.
8. Особенности проектирования оснований сооружений, возводимых на насыпных грунтах
8.1. Основания, сложенные насыпными грунтами, должны проектироваться с учетом их значительной неоднородности по составу, неравномерной сжимаемости, возможности самоуплотнения, особенно при вибрационных воздействиях, изменении гидрогеологических условий, замачивании, а также за счет разложения органических включений.
Примечание . В насыпных грунтах, состоящих из шлаков и глин, необходимо учитывать возможность их набухания при замачивании водой или химическими отходами производств.
8.2. Неравномерность сжимаемости насыпных грунтов должна определяться по результатам полевых и лабораторных исследований, выполняемых с учетом состава и сложения насыпных грунтов, способа отсыпки, вида материала, составляющего основную часть насыпи. Модуль деформации насыпных грунтов, как правило, должен определяться на основе штамповых испытаний.
8.3. Основания, сложенные насыпными грунтами, должны рассчитываться в соответствии с требованиями разд.2. Если насыпные грунты являются просадочными, набухающими или имеют относительное содержание органического вещества , следует учитывать соответственно требования разд.3 – 5.
Полная деформация основания должна определяться суммированием осадок основания от внешней нагрузки и дополнительных осадок от самоуплотнения насыпных грунтов и разложения органических включений, а также осадок (просадок) подстилающих грунтов от веса насыпи и нагрузок от фундамента.
8.4. Расчетное сопротивление основания, сложенного насыпными грунтами, определяется в соответствии с требованиями пп.2.41 – 2.48.
Предварительные размеры фундаментов сооружений, возводимых на слежавшихся насыпных грунтах, допускается назначать исходя из значений расчетных сопротивлений грунтов основания по рекомендуемому приложению 3.
Значениями допускается пользоваться также и для назначения окончательных размеров фундаментов зданий и сооружений III класса.
8.5. При расчетных деформациях основания, сложенного насыпными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с требованиями пп.2.67 – 2.71:
поверхностное уплотнение оснований тяжелыми трамбовками, вибрационными машинами, катками;
глубинное уплотнение грунтовыми сваями, гидровиброуплотнение;
устройство грунтовых подушек (песчаных, щебеночных, гравийных и т.п.);
прорезка насыпных грунтов глубокими фундаментами;
9. Особенности проектирования оснований сооружений, возводимых на подрабатываемых территориях
9.1. Основания сооружений, возводимых на подрабатываемых территориях, должны проектироваться с учетом неравномерного оседания земной поверхности, сопровождаемого горизонтальными деформациями сдвигающегося грунта в результате производства горных работ и перемещения грунта в выработанное пространство.
Параметры деформаций земной поверхности, в том числе кривизна поверхности, ее наклоны и горизонтальные перемещения, а также вертикальные уступы должны определяться в соответствии с требованиями СНиП по проектированию зданий и сооружений на подрабатываемых территориях. Эти параметры, являющиеся основой для расчета оснований, фундаментов и надфундаментных конструкций сооружений, должны учитываться при назначении расчетных значений характеристик грунта.
9.2. Расчетные значения прочностных и деформационных характеристик грунта для определения усилий, действующих на фундаменты в результате деформаций земной поверхности, следует принимать равными нормативным, полагая в формуле (1) коэффициент надежности по грунту .
Значение модуля деформации грунта в горизонтальном направлении допускается принимать равным 0,5 для пылевато-глинистых грунтов и 0,65 – для песчаных грунтов от значения модуля деформации грунта в вертикальном направлении Е.
9.3. Расчетные сопротивления грунтов основания R должны определяться в соответствии с требованиями пп.2.41 – 2.48. При этом коэффициент условий работы в формуле (7) для сооружений жесткой конструктивной схемы, имеющих поэтажные и фундаментный пояса с замкнутым контуром, следует принимать по табл.8; в остальных случаях – .
Крупнообломочные с пылевато-
глинистым заполнителем и
пылевато-глинистые с
показателем текучести
I L
СИМБИРСК ЭКСПЕРТИЗА
ООО «Симбирск-ЭКСПЕРТИЗА»
432071 г. Ульяновск, ул. Бородина, 20
e-mail:
- О компании
- Деятельность
- ГОСТы и СНиПы
- Нормативные документы
Скачать Пособие к СНиП 2.02.01-83 Пособие по проектированию оснований зданий и сооружений
Дата актуализации: 12.02.2016
Найти: |
Тип документа: |
Отображать: |
Упорядочить: |
Пособие к СНиП 2.02.01-83
Пособие по проектированию оснований зданий и сооружений
- опечатка
- ГОСТ 5180-84 «Грунты. Методы лабораторного определения физических характеристик»
- ГОСТ 10650-72 «Торф. Метод определения степени разложения»
- ГОСТ 11305-83 «Торф. Методы определения влаги»
- ГОСТ 11306-83 «Торф и продукты его переработки. Методы определения зольности»
- ГОСТ 12071-84 «Грунты. Отбор, упаковка, транспортирование и хранение образцов»
- ГОСТ 12536-79 «Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава»
- ГОСТ 17245-79 «Грунты. Метод лабораторного определения предела прочности (временного сопротивления) при одноосном сжатии»
- ГОСТ 19912-81 «Грунты. Метод полевого испытания динамическим зондированием»
- ГОСТ 20069-81 «Грунты. Метод полевого испытания статическим зондированием»
- ГОСТ 20276-85 «Грунты. Методы полевого определения характеристик деформируемости»
- ГОСТ 20522-75 «Грунты. Метод статистической обработки результатов определения характеристик»
- ГОСТ 21719-80 «Грунты. Метод полевого испытания вращательным срезом»
- ГОСТ 22733-77 «Грунты. Метод лабораторного определения максимальной плотности»
- ГОСТ 23061-90 «Грунты. Методы радиоизотопных измерений плотности и влажности»
- ГОСТ 23161-78 «Грунты. Метод лабораторного определения характеристик просадочности»
- ГОСТ 23740-79 «Грунты. Методы лабораторного определения содержания органических веществ»
- ГОСТ 23741-79 «Грунты. Методы полевых испытаний на срез в горных выработках»
- ГОСТ 23908-79 «Грунты. Метод лабораторного определения сжимаемости»
- ГОСТ 24143-80 «Грунты. Методы лабораторного определения характеристик набухания и усадки»
- ГОСТ 25584-90 «Грунты. Методы лабораторного определения коэффициента фильтрации»
- ГОСТ 26518-85 «Грунты. Метод лабораторного определения характеристик прочности и деформируемости при трехосном сжатии»
- ГОСТ 25100-82 «Грунты. Классификация»
- ГОСТ 25260-82 «Породы горные. Метод полевого испытания пенетрационным каротажем»
- ГОСТ 5686-78 «Сваи. Методы полевых испытаний»
- ГОСТ 20276-99 «Грунты. Методы полевого определения характеристик прочности и деформируемости»
- СНиП II-55-79 «Подпорные стены, судоходные шлюзы, рыбопропускные и рыбозащитные сооружения»
- СНиП 2.02.01-83* «Основания зданий и сооружений»
Текстовое изменение опечатка
г.Ульяновск, ул.Бородина, 20
тел: (8422) 43-43-00
Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)
Даны рекомендации, детализирующие основные положения по проектированию и расчету оснований и особенности проектирования оснований зданий и сооружений, возводимых в особых условиях.
Для инженерно-технических работников проектных, изыскательских и строительных организаций.
ПРЕДИСЛОВИЕ
Настоящее Пособие разработано к СНиП 2.02.01-83 и детализирует отдельные положения этого документа (за исключением вопросов, связанных с особенностями проектирования оснований опор мостов и труб под насыпями).
В Пособии рассмотрены вопросы номенклатуры грунтов и методов определения расчетных значений их характеристик, принципы проектирования оснований и прогнозирования изменения уровня подземных вод, вопросы глубины заложения фундаментов, методы расчета оснований по деформациям и по несущей способности, особенности проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях.
Текст СНиП 2.02.01-83 отмечен в Пособии вертикальной чертой слева, в скобках указаны соответствующие номера пунктов, таблиц и формул СНиП.*
__________________
* Текст СНиП 2.02.01-83 отмечен в Пособии курсивом.
Пособие разработано НИИОСП им. Герсеванова (д-р техн. наук, проф. Е.А.Сорочан – разд.1, подраздел “Расчет оснований по деформациям” разд.2 (“Определение расчетного сопротивления грунта основания”, “Расчет деформации оснований с учетом разуплотнения грунта при разработке котлована”), разд.4; канд. техн. наук А.В.Вронский – подразделы “Общие указания”, “Нагрузки”, “Расчет оснований по деформациям” (“Общие положения”, “Расчет деформаций оснований” и “Предельные деформации основания”), “Мероприятия по уменьшению деформаций оснований и влияния их на сооружения” разд.2; канд. техн. наук О.И.Игнатова – подразделы “Нормативные и расчетные значения характеристик грунтов” и “Классификация грунтов” разд.2; канд. техн. наук Л.Г.Мариупольский – подраздел “Методы определения деформационных и прочностных характеристик грунтов” разд.2; д-р техн. наук В.О.Орлов – подраздел “Глубина заложения фундаментов” разд.2; канд. техн. наук А.С.Снарский – подраздел “Расчет оснований по несущей способности” разд.2; д-р техн. наук, проф. В.И.Крутов – разд.3; д-р техн. наук П.А.Коновалов – разд.5; канд. техн. наук В.П.Петрухин – разд.7; канд. техн. наук Ю.М.Лычко – разд.8; канд. техн. наук А.И.Юшин – разд.9; д-р техн. наук, проф. В.А.Ильичев и канд. техн. наук Л.Р.Ставницер – разд.10 при участии института “Фундаментпроект” Минмонтажспецстроя СССР (инж. М.Л.Моргулис – подраздел “Расчет оснований по несущей способности” разд.2), ПНИИИС Госстроя СССР (канд. техн. наук Е.С.Дзекцер – подраздел “Подземные воды” разд.2), МИСИ им. Куйбышева (д-р техн. наук, проф. М.В.Малышев и инж. Н.С.Никитина – подраздел “Определение осадки за пределами линейной зависимости между напряжениями и деформациями” разд.2; д-р техн. наук, проф. Э.Г.Тер-Мартиросян, канд. техн. наук Д.М.Ахпателов и инж. И.М.Юдина – подраздел “Расчет деформаций оснований с учетом разуплотнения грунта при разработке котлована” разд.2), Днепропетровского инженерно-строительного института Минвуза УССР (д-р техн. наук, проф. В.Б.Швец – разд.6) и института “Энергосетьпроект” Минэнерго СССР (инженеры Н.И.Швецова и Ф.П.Лобаторин – разд.11).
Пособие разработано под общей редакцией д-ра техн. наук, проф. Е.А.Сорочана.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Настоящее Пособие рекомендуется использовать при проектировании оснований промышленных, жилых и общественных зданий и сооружений всех областей строительства, в том числе городского и сельскохозяйственного, промышленного и транспортного. В Пособии не рассматриваются вопросы проектирования оснований мостов и водопропускных труб.
Comments are closed, but trackbacks and pingbacks are open.