Press "Enter" to skip to content

İnformasiya Texnologiyaları (İT) İş müsahibəsi sualları

Analysis level

İnformasiya Texnologiyaları və Məlumat İdarəetmə Mərkəzi tender keçirir

Bakı. 27 yanvar. REPORT.AZ/ Əmlak Məsələləri Dövlət Komitəsi (ƏMDK) tabeliyindəki “İnformasiya Texnologiyaları və Məlumat İdarəetmə Mərkəzi” MMC-yə (İTMİM) “Oracle” inzibatçılığının təmin edilməsi, Daşınmaz Əmlakın Qeydiyyatı, Kadastrı və İdarəedilməsi Sisteminin (DƏQKİS) kadastr modulunun dəstəklənməsi, şəbəkə xidmətlərinin göstərilməsi, Veb-serverlərin qurulması və inzibatçılığı sahəsində zəruri olan xidmətlərin göstərilməsinin satın alınması üçün açıq tender elan edib. “Report” xəbər verir ki, bu barədə rəsmi mətbuatda məlumat verilib. Məlumata görə, tenderdə iştirak haqqı 100 manatdır. Tender predmeti üzrə xidmətlər satınalma müqaviləsi imzalandığı tarixdən etibarən bu il dekabrın 30-na qədər mütəmadi göstərilməlidir. Tender təkliflərinin qiymətləndirilməsində iddiaçının maliyyə təklifi, göstəriləcək xidmətlərə dair tələblər, ixtisaslı kadrların olması meyarlarına üstünlük veriləcək. İddiaçılar tenderdə iştirak etmək üçün tələb olunan sənədləri fevralın 16-na qədər, tender təklifini və onun bank təminatını isə fevralın 27-nə qədər İTMİM-ə (Bakı şəhəri, Heydər Əliyev prospekti, 139A ünvanına) təqdim etməlidirlər. Təkliflərə fevralın 28-də adı çəkilən ünvanda baxılacaq.

İnformasiya Texnologiyaları (İT) İş müsahibəsi sualları

Bir İnformasiya Texnologiyaları (İT) işi üçün müsahibə etdiyiniz zaman, standart müsahibə suallarına əlavə olaraq, bir iş müsahibəsi zamanı soruşulacaqsınız, təhsil, bacarıq , sertifikatlar , dillər və s. Haqqında daha çox diqqət və xüsusi texniki suallar veriləcək. Sizdə təcrübəyə malik olan alətlər.

İşə qəbul meneceri, mövqeyini necə idarə etmək üçün lazımlı bir şəkildə ətraflı məlumat əldə etmək istəyir.

İşin keyfiyyətlərini nəzərə alaraq müsahibə hazırlayın – işdə uğur qazanmaq üçün hansı bacarıqlara, biliklərə və təcrübələrə ehtiyacınız var.

İşəgötürənin aradığı işin tələblərinə əməl edin və işəgötürənin aradığı ən yüksək keyfiyyətlərin siyahısını verin. Sonra etimadnamənizi siyahıya uyğunlaşdırın. Şirkətin istədiyi hər bir xüsusiyyətə sahib olduğunuzu müzakirə etməyə hazır olun. Vəzifənin tələblərinə uyğun olaraq ixtisaslarınızı necə uyğunlaşdırmaq olar .

Həmçinin ümumi İT görüş suallarını nəzərdən keçirin və iş üçün ixtisas tələblərinə əsasən cavab hazırlamaq üçün vaxt ayırın. Cavab verərkən, mümkün olduğunda, bir layihəni və ya vəziyyəti necə ələ aldığınızı dəqiq nümunələr verin. Müsahibə ilə paylaşmaq üçün nümunələr yaratmaq üçün STAR müsahibəsi cavab üsulundan istifadə edin.

Müsahibə, işə necə və niyə etibar etdiyini ətraflı məlumat verəcəkdir. Xahiş olunacaq suallar sizin üçün müsahibə etdiyiniz işə xüsusi olacaq, buna görə dəyişəcək.

Sizin və Texniki Bacarıqlarınız haqqında suallar

  • Bu mövqe haqqında sizi maraqlandıran nədir? – Sample Cavablar
  • Sertifikatlar nədir?
  • Texniki sertifikatlarınızı saxlamaq üçün nə edirsiniz?
  • Hansı avtomatlaşdırılmış qurulmuş alətlər və proseslər istifadə edirsiniz?
  • Hansı inkişaf vasitələrindən istifadə etdiniz?
  • Hansı dillərdə proqramlaşdırılmışsınız?
  • Hansı qaydanı idarəetmə vasitələrindən istifadə etdiniz?
  • Hansı texniki veb saytlar təqib edirsiniz?
  • Başlanğıcda təklif olunan dizayn üzərində yaxşılaşdığınız zaman təsvir edin.
  • Başladığınız ən yenilikçi dəyişikliyi və bu dəyişikliyi həyata keçirmək üçün nə etdiklərini təsvir edin.
  • Bu problemi nəzərə alaraq ( problem iş tələblərinə əsaslanaraq ), hansı həllin təmin edərdiniz? Düşüncə prosesini izah edin.
  • Bir neçə müddətə necə rəhbərlik edirsiniz?
  • Bu sənayedə necə davam edirsiniz?
  • İT məsələlərini necə həll edirsiniz?
  • Çalışdığınız ən son layihə barədə danışın. Məsuliyyətiniz nə idi?
  • Ən qürur verdiyiniz layihə haqqında və sizin töhfəniz nədir?
  • Texniki biliklərinizi praktiki şəkildə tətbiq etdiyinizə nümunə verin.
  • Sizin qarşılaşdığınız ən böyük IT problemi və onu necə idarə etdiniz?
  • Bir müştəri saytında işləyirsiniz və müştəri şirkətinin CTO-nu sizinlə görüşə biləcəyini soruşdu. CTO, komanda daha beş nəfər gətirmək üçün nə qədər başa gələcək bilmək istəyir. O, sizi aradığınız işin çox qeyri-müəyyən tələblərini verir. Siz nə edərdiniz?
  • Yeni bir iş alətini araşdırmaq istəndi. İki həllin rast gəldiniz. Biri on-premise həll edir, digər bulud əsaslıdır. Onlar funksional olaraq ekvivalent olduğuna inandıqda, niyə digərini bir-birinizə məsləhət görürsünüz?
  • İstehlakçının veb saytını istehsalda pozan bir parça kod təqdim etdiniz. Test etdiyinizdə bu səhv tapdınız və bu barədə heç kəs bilməyəcək. Növbəti hərəkətiniz nədir?
  • Bir iş vahidi, Excel elektron tabloları və Access veritabanlarını istifadə edərək, biznesin əsas komponentini idarə etdiyini öyrəndiniz. Bu gün hansı risklər var və bu riskləri azaltmaq üçün nə təklif edərdiniz?

İş və şirkət haqqında suallar

  • Bu iş üçün sizə uyğun olan bacarıqları təsvir edin. – Sample Cavablar
  • İnsanları və ya ideyaları idarə etməyə üstünlük verirsinizmi?
  • Sizin istehsal yerləşdirmə prosesini təsvir edin.
  • Bu vəziyyətin təsvirindən, gündəmə əsasən nə edəcəksiniz?
  • Proqram təminatçıları ilə işləyirdinizmi? Satıcı əlaqələrini necə idarə edirsiniz?
  • Birbaşa biznes istifadəçilərinizlə işləmək nə dərəcədə vacibdir?
  • Bu iş üçün əsas səlahiyyətlərinizi necə qiymətləndirirsiniz?
  • Əgər muzdlu olsaydınız, bu BT komandası haqqında dəyişiklik edəcəyiniz bir şey varmı?
  • Əgər işə götürsəniz, bu işdə hansı çətinlikləri gözləmək olar? – Sample Cavablar
  • Bu şirkətin ən böyük rəqibləri hansı şirkətləri görürsünüz?

Texniki suallar

  • REST və SOAP veb xidmətlərini müqayisə edin və əksini tapın.
  • Doğrulama və yetkilendirme və müəssisələrin yerləşdirilməsində onları dəstəkləmək üçün istifadə olunan vasitələri müəyyənləşdirin.
  • Optimist və pessimist kilidləmə arasındakı fərqləri təsvir edin.
  • Tier mimarisindeki elementləri və onların lazımi istifadəsini təsvir edin.
  • Eclipse istifadə etdiniz mi?
  • Visual Studio istifadə etdiniz mi?
  • Mənbə nəzarətini necə idarə etdiniz?
  • Vaxtınızın nə qədər (hansı faizi) vahid testini keçirirsiniz?
  • Siz inkişaf etdiyiniz koddan nə qədər istifadə edirsiniz və necə?
  • Necə ideal iş mühitini təsvir edirdiniz?
  • Əgər bilirsinizsə, layihənin son tarixini verməyəcəyəm, menecerinizə və ya müştərinizə nə deyəcəksən?
  • Verilənlər bazasında silmək ifadəsi ilə kəsilmiş bir bəyanat arasındakı fərq nədir?
  • Şəbəkə təhlükəsizliyi, bir bal pot nədir və niyə istifadə olunur?
  • Ən əhəmiyyətli verilənlər bazası performans ölçümleri nelerdir və bunları necə izləyirsiniz?
  • Tranzit qeydləri nədir və necə istifadə olunur?
  • Məhsullarınızın keyfiyyətini təmin etmək üçün nə etdiniz?
  • Sənədləri nə düşünürsən və niyə bu vacibdir?
  • Həqiqi proqnozları təmin etmək üçün nə etməliyəm?
  • Sizə təqdim edilən həll sənədlərində nə gözləyirsiniz?
  • Müvəffəqiyyətli bir qrup üçün hansı elementlər lazımdır və nə üçün?
  • Vahid, keyfiyyət və istehsal mühitində ardıcıllığı təmin etmək üçün nə etdiniz?
  • Çarpaz sayt scripting hücumu nədir və ona qarşı necə müdafiə edirsiniz?
  • SAN nədir və necə istifadə olunur?
  • Kümelenme nədir və onun istifadəsini təsvir edir.
  • ETL nədir və bu zaman istifadə edilməlidir?
  • Ən əhəmiyyətlisi – keyfiyyət və miqdarı?
  • Quruluş nədir?
  • OLAP və OLTP arasındakı fərq nədir? Hər dəfə nə vaxt istifadə olunur?
  • Avtomatlaşdırılmış quruluş prosesində davamlı inteqrasiya sistemlərinin rolu nədir?
  • SMNP-nin rolu nədir?
  • Şəbəkə arxitekturasında DMZ-in rolu nədir? Verilənlər bazasında dizaynda relational integrity necə tətbiq olunur?
  • Veritabanı dizaynını denormalize etmək nə vaxt uyğun?
  • İşinizi daha məhsuldar etmək üçün internetdən bir dəfə yüklədiyiniz zaman nədir və nə idi?
  • Hansına üstünlük verirsən; xidmətə yönəldilən və ya batch yönümlü həllər?

Daha çox İş Söyleşisi Suallar və Cavablar

Müsahibə sualları və cavabları
Tipik iş müsahibə sualları və nümunə cavablar.

Müsahibə sualları
Müsahibə istəyən namizədlər üçün suallar.

LAYİHƏNİN İNFORMASİYA MODELLƏRİ

Similar tools were constructed for all the steps in the learning cycle (see Paper I).

The proposed scale with its descriptive wording is meant to guide the assessor in the rating of the individual incident reports. The description in the actual incident report is compared with the description of the requirements for the rating levels and the one best matching the actual description is chosen. Interpolation between the levels should of course be done. The wording should not necessarily be taken literally, but used as a guide.

After assessment of each dimension in every step of the learning cycle, one has a set of data that can be used for calculation of mean values of the effectiveness of each step in the learning cycle for a particular incident report.

Weighting the dimensions for importance

One can apply the method without attempting any weighting of the importance of the various dimensions. However, in reality some dimensions are probably more important than others for the learning process – different dimensions in different steps. It is argued that in the reporting and analysis steps, the dimensions describing the factual circumstances of the incident (i.e. Scope and Quality) are most important, whereas in the implementation and follow-up steps, for example, the timing and information dissemination dimensions increase in importance. As a first approach however, based on input from the general domain knowledge of the author and from safety specialists in the companies in the LINS study, the various dimensions were weighted as follows to obtain a “fair” measure of the effectiveness:

 Information dissemination 15%

It was further proposed to use the same weighting in all steps as a first approach, although minor changes could certainly be argued for.

5.3 Effectiveness of the lesson

developed. A classification system for lessons learned was introduced with six “levels of learning”. This was done in order to fulfil the purpose (objective) of expressing the results of the method of assessing the effectiveness (an expression of the quality) of the learning product – the lesson learned – in quantitative terms. The system was based on already existing classification systems (by e.g. Kjellén, 2000). The modifications introduced were mainly built on information found in the incident learning systems from the field objects in the LINS study. In order to evaluate the potential learning a thorough analysis of the causation picture is necessary, and a tool for this had to be developed.

Paper II contains a detailed description of the method. What follows is an abbreviated version.

To fulfil its purpose, the method should contain the following steps, which become the design criteria:

1. Evaluation of the actual level of learning, based on the lessons learned from individually reported incidents.

2. Evaluation of the potential level of learning from individually reported incidents.

3. Calculation of the relationship (the ratio) between the actual and potential levels of learning for a larger number of incidents.

4. Adjusting the results from 1-3, taking into consideration incidents that are not reported (the hidden number).

5. Consideration of possible learning from incidents on an aggregated basis.

6. Consideration of other learning mechanisms related to incidents.

This method is also meant to be used on all reported incidents during a given time period in order to see the distribution among levels of learning, to calculate mean values and for making comparisons (e.g. over time, between departments and companies).

Step 1: Actual learning (expressed as level of learning)

The following description relates to the LINS and the MARS work. The first step involves classifying the lessons learned (or only the lessons, if the lessons learned cannot be clearly determined) from the reported incidents in an incident learning system according to a system based on:

 Primarily, how broadly the lesson learned is applied in the enterprise (from very locally, only where the incident occurred, to the whole site [or even broader], where similar conditions prevail).

 Secondly, how much organisational learning is involved (technical, procedural and personnel measures).

 Thirdly, how much organisational long-term memory is involved.

There are no sharp limits between the three aspects; overlaps between the geographical aspect and the other two aspects exist.

A short version of the classification system is shown in Table 5.2. As a comparison, related classifications based on the 1 st , 2 nd and 3 rd order learning system and on the single-loop and double-loop learning system are shown. Table 5.2 also shows that for classifying the broad range of incidents that have rather low levels of learning, the concept of single and double-loop learning in particular, but also the concept of 1 st , 2 nd and 3 rd order are not very suitable because a vast majority of the incidents will have single-loop and 1 st order learning.

Table 5.2 Classification system for levels of learning.

Level Characteristics 1 st , 2 nd , 3 rd

Single-loop Double-loop

0 No organisational learning – –

I Primary: Limited local level learning Additional: Almost no organisational learning; short-term memory

II Primary: Local level learning

Additional: Limited organisational learning;

mostly long-term memory

III Primary: Process unit level learning Additional: Substantial organisational learning; long-term memory

IV Primary: Site level learning

Additional: Substantial organisational learning; long-term memory

V Primary: Higher learning, Corporate learning

Additional: Substantial organisational learning; long-term memory

The result from step 1 is a percentage distribution of the incidents on the different levels of learning. From this information, conclusions on the effectiveness of learning

can already be drawn. A “mean” value of the level of learning can now be calculated.

Since an ordinal scale has been used, this is not a true arithmetical mean value, but for the purpose of the study this is of minor importance.

Step 2: Potential learning

The following description relates to the LINS and the MARS work.

To better assess the effectiveness of the learning in a way that goes beyond the assessment of actual learning in step 1, one can compare the actual learning with what could have been learned, had the full learning potential been utilised. It was decided to develop a tool to enable evaluation of the potential level of learning from incidents.

Naturally, not all incidents contain lessons at a high level of learning. Certain incidents only justify measures at a low level of learning – a local technical measure or a limited procedural or organisational measure – or even no measures at all. However, most incidents have a potential for higher levels of learning. This is based on the assumption that if one can clarify the whole causation picture around an incident, it would be possible to evaluate the potential lessons of that incident. A full root cause analysis is, however, often time-consuming. Therefore, a tool was developed for evaluation of the most probable direct and underlying causes of incidents, a tool which is efficient and less time-consuming to use. The tool is based on the same thinking used in the MORT (Management Oversight and Risk Tree) technique (Johnson, 1973; Koornneef and Hale, 2008) and also shows resemblance to SMORT (Safety Management and Organisational Review Technique) with its checklists, which have been used, for example, by Tinmannsvik and Hovden (2003). It is proposed here to use the stop rule: one stops the analysis when it is no longer possible for the organisation to influence the factors giving rise to the causes.

The tool was developed for use in clarifying the causation picture over and above what is already given in incident reports. The tool was constructed using the model of the company as a socio-technical system with different hierarchical levels (Rasmussen, 1997). Here is a list of suitable levels that can be used for many types of enterprises:

 Top level, company management (typically the site management)

 Other influencing levels (typically staff and support functions)

 Supervision at higher levels (typically process unit/middle management)

 Supervision at execution level (typically first line supervisors)

 Direct executing level (typically sharp end operators)

An abbreviated version of the tool is presented in Table 5.3. The full version can be studied in Paper II.

Table 5.3 Tool for evaluation of underlying causes of incidents.

Analysis level

Organisation

Direct causes Underlying causes

(latent conditions)

Inadequate review of systems and safety performance of organisation.

Poor communication of safety priorities.

Inadequate or weaknesses in safety management system.

Inadequate or weaknesses in safety culture.

Poor safety commitment and leadership.

Poor risk assessments.

Inadequate systems for technical standards.

Inadequate risk assessment procedures.

Operations Supervision/review/control of systems and organisation inadequate.

Inadequate operations procedures, competence, resources and training.

Risk assessment inadequate.

No systematic procedures for risk assessment.

Inadequate commitment, review and control by higher management.

No time for relevant training.

Maintenance Similar to Operations but adjusted to maintenance activities.

Similar to Operations but adjusted to maintenance activities.

Operations Supervision/control of execution inadequate.

Staffing, training of operator personnel inadequate.

Other priorities higher than safety.

Inadequate commitment (from higher levels of management).

Need for resources, training, competence not appreciated.

Inadequate review of system and safety performance.

Maintenance Similar to Operations but adjusted to maintenance activities.

Similar to Operations but adjusted to maintenance activities.

Operation outside design conditions.

Procedures not followed.

Direct operator error.

Shortcomings of individuals.

Situational factors: high workload, stress or other aggravating factors.

Similar to Operations but adjusted to maintenance activities.

Similar to Operations but adjusted to maintenance activities.

Loss of process control.

Instrument/control/monitoring device failure.

Maintenance/inspection programmes inadequate or not followed.

Operation outside design conditions.

By applying this tool to a reported incident it is possible to generate the probable underlying causes and thereby the potential lesson learned that would have been possible to extract from the incident. With this done, one can again use the classification system in Table 5.2 to evaluate the level of learning for this potential lesson learned.

After applying this tool to all incidents in a given period, one will have as a result of step 2 a new set of figures describing the distribution among the levels of learning for the potential learning from the reported incidents. A “mean” value for the potential level of learning can also be calculated here.

In the MARS study, a tool similar to the one presented in Table 5.3 was developed and used to investigate the underlying causes of the accidents. The principle difference is that in the MARS tool, the first level of causes are those categories given

in the official MARS system, whereas the tool presented above starts with causes typically mentioned in the incident databases of the companies in the LINS study.

Step 3: Comparison between actual and potential levels of learning

With the two sets of values – for actual level of learning and for potential level of learning – one can make comparisons between the two and draw conclusions about the effectiveness of learning from incidents. The figures, distributed among the levels of learning, can be compared and the ratio between the mean values can be used as a simple measure of effectiveness. Conclusions on areas for improvement can then be drawn.

Step 4: Adjusting the results from steps 1-3, taking into consideration incidents that are not reported (the hidden number)

The above picture is not the whole story. One ought to take into consideration the fact that a bigger or smaller number of incidents occur but are not reported; hence no organised learning takes place. In the original method published in Paper II, there is only a qualitative reasoning about this issue. One can stop with that.

However, because the issue of the hidden number can be very significant in the learning from incidents in some companies, an attempt to treat it quantitatively was felt to be worthwhile. In the next section, 5.4 Efficiency of reporting, the issue of how many reportable incidents that actually occur is treated. One has to be aware that the results of step 4 contain much more uncertainty than the results from steps 1-3. The hidden number depends on the openness, alertness and willingness in the organisation to report all incidents with a learning potential. It also depends on the threshold the company has defined for reportable incidents, or rather the incidents worth reporting. There is no given number for how many incidents would be reportable in an organisation. However, the total number of reportable incidents can be assumed to be proportional to the size of the company, and at least reasonably proportional to the number of employees. The number of reportable incidents will also depend on the type of industry and its activities. Further, the number of incidents will be dependent on the safety maturity in the company. In this first version of the method it is proposed to use only the number of employees as a base, as a first approximation.

A company would normally be in the position to make an “honest” estimate of what would be a reasonable figure to use in the calculation for correction for incidents not reported. In order to assess the order of magnitude for the number of reportable incidents, one could turn to the six companies in the LINS study. As will be discussed in 5.4.2, a reasonable figure to use, if no internal company figure is produced, is 3 reportable incidents per employee, per year. Unreported incidents can be assumed to have 0 level of learning. Regarding the potential level of learning from the unreported incidents (predominantly incidents with minor consequences and a less complex

causation picture), one can assume a somewhat lower average level of learning than for the incidents actually reported. Even with all these assumptions, it is considered worthwhile to include this step in the method in this semi-quantitative way. If the purpose is to compare the level of learning between various departments, sites or companies, one needs to have a common baseline defining what a reportable incident is (i.e. the same threshold for reporting should be used). This will, however, also vary between organisations.

By making an adjustment for the hidden number in the manner described above, one will be able to arrive at numerical values of the level of learning (adjusted for non-reported incidents), which is probably a truer picture than the uncorrected values of step 3.

Step 5: Consideration of possible learning from incidents on an aggregated basis – the 2 nd loop

The next step in the method considered the possible learning from the incidents when treated on an aggregated basis, if such a 2 nd loop really exists and increases the learning. The same tool that was developed for evaluation of the effectiveness of the 2 nd loop, and described in section 5.2 Effectiveness in the learning cycle, can be used to judge whether the results from steps 1-4 should be adjusted or not. A good treatment of the incidents in the 2 nd loop can compensate in part for poor results from the step 1 evaluation. As of now, no quantitative approach has been tried in this step.

Step 6: Consideration of other mechanisms for learning from incidents

The final step in the method considers learning mechanisms for incident learning outside of the incident learning system proper. Information for such considerations is found in interviews of employees (e.g. in safety audits). No quantitative approach has as yet been tried in this step.

Comments are closed, but trackbacks and pingbacks are open.