Press "Enter" to skip to content

Riyaziyyat – Namazov 7ci sinif cavablarini hardan tapa bilərəm

c) Müstəqil olaraq biliklərə yiyələnmə qabiliyyətləri formalaşdırma məqsədi.

Riyaziyyat Mövzu Sınağı №1

✓ ������������ə ��������������������ı ����������ı������ Ö����ə�� ✓ ��İ������İ�������� fənnindən ödənişsiz olaraq imtahanlara hazırlaşmaq və öz bilik səviyyənizi yoxlamaq istəyirsiniz? Bu zaman @Riyaziyyat_Tedris_Merkezi kanalı sizin üçün ən uyğun kanaldır. Kanala abunə olmaqla siz �� İmtahanlara hazırlıq �� �� Dərs izahları ��‍�� �� Sual müzakirələri �� �� Onlayn sınaqlar �� �� Məlumat və test pdfləri �� �� Təhsillə bağlı ən yeni və rəsmi xəbərlər �� Və daha çox məlumat əldə edə bilərsiniz https://t.me/riyaziyyat_tedris_merkezi

Riyaziyyat Tədris Mərkəzi

İmtahanı Əlavə Et – Pulsuz

İstənilən vaxt

1 saat

5 ay əvvəl

Tərkib (1)

Riyaziyyat

Həftənin Oxuyanları

Rəylər

Nuray Bağırova

Sehv suallar var idi

Zerqelem Memmedova

Zəhra Adilova

Məhlul məsələsində 40% yazdim belə şəkildə cavab səhvdir 40 yazılıb duz yazmışam səhvliyi duzeldersiniz

Nərgiz Həsənzadə

Solmaz Əhmədli

Birinə 40% yazmışam səhv qoyulub düzgün cavab 40 qeyd olunub zəhmət olmasa bunu nəzərə alın

Rövşən

Yaxşı idi amma buraxılış suallarında uzaq idi məncə

Riyaziyyat – Namazov 7ci sinif cavablarini hardan tapa bilərəm?

salam mən 7 ci sinifde oxuyuram mənə namazov riyaziyyat 7 ci sinifin qiymətləndirmə vəsaitinin cavabları lazımdı onu yazıb qurtaran varsa mənə desin xaiş və bir də bu misalın həlli lazımdı
perimetri 67sm olan ABC bərabəryanlı üçbucağında BC oturacaq,BD median AD=12sm-dir.BC-ni tapın.
A)23sm
B)21sm
C)17sm
D)19sm

Sualı verdi: Albert Einstein12 ( 08/08/2015 )
Kateqoriya: Sual . alimləri, riyaziyyat. Qısa keçid.

Verilmiş cavablar və yazılan şərhlər (7 cavab var)

Cavablamaq üçün sağ sütundan hesaba daxil olmaq lazımdır

Deməli,belə:MEDIAN TƏRƏFİ QARŞIDAKI TƏRƏFİN ORTASI İLƏ BİRLƏŞDİRdiyindən,AD 12 dirsə,DC’də 12 olacaq.3bucaq =yanlı olduğundan,AC 24 olduğuna görə AB’də 24 olacaq.Ümumi perimetr 67 olduğuna,bc tərəfi=67-48=19.(həmin 48 AB və AC tərəflərinin cəmidir.)

Cavablamaq üçün sağ sütundan hesaba daxil olmaq lazımdır

çox sağol Əli təşəkkür eliyirəm əziyyətinə görə

Riyaziyyatın tədrisi metodikasının metodoloji əsasları

aydın olur ki, elmlər biri-birindən məhz özünəməxsus olan predmetləri və metodları ilə fərqlənirlər.

Riyaziyyatın tədrisi metodikası riyaziyyat elminin bu və ya digər anlayışlarını, qanun və

qanunauyğunluqlarını və s. şagirdlərə öyrədir. Elmi riyaziyyat da obyektiv aləmin gerçəkliklərini

öyrənir, tədqiq edir və s.. Yəni, riyaziyyatın metodları elə fəlsəfənin metodlarıdır. Və tam olaraq

söyləmək olar ki, fəlsəfə riyaziyyatın, o cümlədən də riyaziyyatın tədrisi metodikasının metodoloji

əsasını təşkil edir. Həmçinin elmi riyaziyyatın ayrı-ayrı sahələri, pedaqogika, psixologiya da

riyaziyyatın tədrisi metodikasının metodoloji əsasını təşkil edirlər.

Riyaziyyatın tədrisi metodikası bir çox elmi sahələrlə əlaqədardır ki, onlardan aşağıdakıları

qeyd etmək olar:

dilçiliklə, fizika ilə, biologiya ilə və s..

Metodologiya — metodlar haqqında təlim deməkdir. Buradan da aydın olur ki, riyaziyyatın

tədrisi prosesində hansı elmi sahələrlə bağlı olan metodlardan istifadə olunursa, deməli həmin elmin

metodları da (təbiidir ki, məhz özlri) elə riyaziyyatın

tədrisi metodikasının da metodlarıdır. Başqa sözlə, həmin sahələr elə riyaziyyatın

tədrisi metodikasının da metodoloji əsasını rəşkil edir.

Aydındır ki, metodoloji əsaslarla bərabər RTM – in obyekti və subyektindən də bəhs etmək

RTM – in obyekti olaraq: — məktəb , təlim prosesi, proqram və dərsliklər və

s. nəzərdə tutulur.

RTM – in subyekti qlaraq: — konkret olaraq götürülənlər, yəni şagird, müəllim və s.

6. Riyaziyyatın tədrisi metodikasının məqsədi.

Konkret olaraq riyazi təlimin məqsədi dedikdə bunlar aşağıdakılar olaraq nəzərdə tutulur ki,

onların özləri də riyazi təlimin ümumu məqsədlərindən çıxır:

1. Məktəb riyaziyyatı kursunun əsas məqsədini müəyyən etmək və məktəb riyaziyyatı

kursunun məzmununu aşkar etmək.

2. Daha geniş və əhatəli rasional üsulların işlənib hazırlanması, təlimin qarşıya qoyulmuş

məqsədinə müvafiq olan təlimin təşkilat formalarının əhatəliliyinin artırılmasına, genişlənməsinə

qarşısında qoyulmuş ümumi məqsədə müvafiq olaraq riyaziyyatın tədrisi

metodikasının qarşısında duran məqsədlərə əsas məqsəd olaraq aşağıdakılar daxildir:

1) Riyazi təlimin ümumtəhsil məqsədi.

2) Riyazi təlimin tərbiyəedici məqsədi.

3) Riyazi təlimin praktiki məqsədi.

1) Riyazi təlimin ümumtəhsil məqsədi.

a) Şagirdlərə müəyyən riyazi bilik, bacarıq və vərdişlər vermək.

b) Obyektiv gerçəkliləri dərk etmələri məqsədi ilə çagirdlərə riyazi metodlara

yiyələnmələrində müəyyən işlər görmək, köməkliklər göstərmək.

c) Şagirdlərin riyaziyyatın yazılı və şifahi dilinə yiyələnmələrinə nail olmaq.

d) Fəal təlim prosesində tətbiq etmələri məqsədi ilə şagirdlərin minimum riyazi

keyfiyyətlərə malik olmalarına nail olmaq.

2) Riyazi təlimin tərbiyəedici məqsədi.

a) Şagirdlərdə fəlsəfi-dialektik dünyagörüş tərbiyə etmək. Məsələn, canlı

seyrdən mücərrəd təfəkkürə və buradan da praktikaya, obyektiv reallıqları dərk etməyin dialektik

yolu belədir. Və yaxud astranomiya ilə bağlı olan fərziyyələr yürüdə bilmək və s. kimi qabiliyyət və

bacarıqlara yiyələnmə xüsusiyyətləri formalaşdırmaq, tərbiyə etmək.

b) Milli tərbiyə.

c) Mənəvi və estetik tərbiyə.

d) Təfəkkürün inkişafınin tərbiyəsi.

e) Riyazi mədəniyyətin (məsələn, mükəmməllik, qrafiklərlə işləmə mədəniyyəti və bü kimi

3) Riyazi təlimin praktiki məqsədi.

a) Qazanılmış bilikləri həyati fəaliyyətdə fəaliyyət prosesinə tətbiq etmək və ya elmi

fəaliyyəti davam etdirmə prosesində tətbiq etmə məqsədi.

b) Riyazi vasitələrlə, riyazi aparatura ilə işləmə qabiliyyətləri formalaşdırmaq məqsədi.

c) Müstəqil olaraq biliklərə yiyələnmə qabiliyyətləri formalaşdırma məqsədi.

7. Riyaziyyatın tədrisi metodikasının predmeti.

Məktəb riyaziyyatı kursunun predmetini əsasən aşağıdakılar təşkil edir:

1. Məktəb riyaziyyat təliminin əsaslandırılmış məqsədi.

2. Riyazi təlimin məzmununun elmi şıkildə işlənib hazırlanması.

3. Riyazi təlim üsullarının (metodlarının) elmi əsaslara uyğun şəkildə işlənilib hazırlanması.

4. Təlim vasitələrinin elmi əsaslara uyğun şəkildə işlənilməsi.

5. Riyazi təlimin elmi əsaslara uyğun təşkili.

Təbiidir ki, bu yuxarıdakılara uyğun olaraq, qeyd edə bilərik ki, məqsəd, vasitələr, təlim

formaları, təlimin məzmunu və s. bu kimilər metodiki sistemin əsas kompanentlərini təşkil edir.

8. Riyaziyyatın tədrisi metodikasının məzmunu.

əktəb riyaziyyatı kursunun məzmunu təhsilin məqsədinin denişlənməsi ilə bağlı olaraq

əyişmişdir ki, bu da yeni-yeni akrual və perspektivli məsələlərin riyazi kursa daxil

ı ilə bağlı olan məsələdir. Və

əhs olunan məsələ təhsil standartlarının dəyişməsi ilə xarakterizə olunur.

Riyaziyyatın tədrisi metodikasının məzmununu ilə bağlı olaraq söylənilmiş belə bir

müddəanı qeyd etmək yerinə düşərdi ki, “Riyaziyyat kəmiyyətlər və çoxluqlar üzərində qurulmuş

Müəyyən ümumuləşmələr apardıqdan sonra belə bir ümumiləşmə aparmaq olar

ki, riyaziyyatın tədrisi metodikasının məsmununu aşağıdakılar təşkil edir:

2. Ədədi sistemlər.

3. Tənlikər və bərabərsizliklər.

4. Eynilik çevirmələri.

5. Koordinat sistemləri. Fəza təsəvvürləri.

6. Uyğunluq və funksiya.

7. Həndəsi fiqurlar və onların xassələri. Həndəsi çevirmələr, ölçü və s..

9. Analizin başlanğıcı ilə bağlı anlayışlar.

10. Çoxluqlar nəzəriyyəsi və müddəalar məntiqi elementləri.

11. Elektron hesablama maşınları, informasiya və kommunikasiya texnologiyaları ilə bağlı

Riyaziyyatın tədrisi metodikası ilə bağlı olaraq bir daha qeyd edək ki, ilkin riyazi təlimlərlə

bağlı məsələlərə sadə hesab əməllərinin kiçik yaşlı uşaqlara öyrədilməsi kimi formada tarixən şərq

ölkələrində başlanılmışdır. Hələ b.e.ə. V əsrdə Qədim Yunanstanda dənizçiliyin, ticarətin və eləcə

də sənətkarlığın inkişafı ilə bağlı məsələlər riyazi mədəniyyətin təşkili və inkişafına da bğyük təsir

göstərmişdir. Elə bu baxımdan da hələ kiçik yaşlardan başlayaraq uşaqlara hesablamalar (hesab

əməlləri) və praktiki həndəsə elementlər öyrədilirdi.

Riyaziyyatın tədrisi metodikası elmi riyaziyyatdan fərqli olaraq, öyrənilən məsələlərin

tətbiqiliyi ilə özünəməxsus xüsusiyyətə malikdir.

Riyaziyyatın tədrisi metodikası — pedaqogikanın bölməsi, sahəsi olub, ayrı-

ayrı yaş dövrlərində riyazi təlimin qanun və qanunauyğunluqlarından bəhs edir.

Riyaziyyatın tədrisi metodikası bir elmi sahə kimi aşağıdakı məsələlərin

tadqiqatı ilə məşğul olur:

1. Riyazi təhsilin problemləri;

2. Riyazi tələmin öyrədilməsi problemləri;

3.Riyazi mahiyyətə malik olan tərbiyəvi məsələlərin formalaşdırılması problemləri.

Riyaziyyatın tədrisi metodikası öz xüsusi mürəkkəbliyi ilə fərqlənir. Riyaziyyatın tədrisi

metodikasının predmetini riyazi təlimin məqsəd və məzmunundan, təlim metodları, təlimin üsul və

vasitələri, formasından ibarət olan riyazi təlim təşkil edir. Bu fonda riyazi təlimin üsulları ilə bağlı

olaraq müəyyən məsələlərin verilməsi ümumiyyətlə, faənnin özünün öyrənilməsinə güclü təsir etmə

xüsusiyyətinə malikdir ki, bu xüsusda bəzi qeydləri verməyi məqsədəuyğun hesab etmək olar.

Təlim metodları müxtəlif əsaslara görə təsnif oluna bilər:

Dərketmə fəaliyyətinin xarakterinə görə (M.N.Skatkin, M.İ.Maxmutov, İ.Y.Larner):

1. izahlı -təsviri formada (nəqletmə, mühazirə, söhbət, nümayişetdirmə və s.);

2. repreduktiv formada (məsələ həlli, biliklərin təkrarlanması formasında);

3. problemli formada ( problemli məsələlər, idrakı məsələlər və s.);

4. qismən araşdırıcı– evristik;

5. tədqiqat xarakterli.

Fəaliyyət kompanentlərinə görə (Y.К. Babanski):

1. təşkilati-fəaliyyət — təşkil forması və təlim-dərketmə fəaliyyətinin tətbiqi;

2. situmullaşdırıcı — situmullaşdırma metodu və təlimin səmərəliliyinin özünü yoxlama

3. yoxlama forması.

Didaktik məqsədlərə görə

Yeni biliklərin öyrənilməsi metodları, biliklərin möhkəmləndirilməsi metodu, yoxlama

Təlim materialının şərhi, verilməsi formalarına görə:

1. monoloq-informasiya-məlumatlandırıcı ( nəqletmə, mühazirə, izahetmə);

2. dialoq şəklində (problemli şərh, söhbət, disput).

Təlimin təşkilat formasınına görə.

Şagirdlərin müstəqil fəallığının səviyyəsinə görə.

Mənbələrə əsasən biliklərin verimə səviyyəsinə görə (А.А,Vaqin, P.V.

1. sözlü izahlı: nəqletmə, mühazirə, söhbət, təlimatlandırma, diskusiya və s.;

2. əyani: demonstrasiya, illüstrasiya, sxem, qrafik, təlim materialının nümayişi;

3. praktiki: tapşırıqlar, labarator işləri, misallar və s..

Şəxsiyyətin nəzərə alınmasına görə ( şüurlu yanaşma, özünüaparma, hissetmə):

1. Şüurlu yanaşma, dərketmə (nəqletmə, söhbət, məlumatı çatdıra bilmə, təsviretmə və s.);

2. Özünüaparma (tapşırıqlar, məşq və s.);

3. Hissetmə – situmullaşdırma (yoxlama, rəğbətləndirmə, tərifləmə və s.).

Qeyd edək ki, təhsilin yeniləşən məzmunu riyaziyyatda da yeni-yeni metodların ortaya

çıxmasına səbəb olur. Məsələn: çeviklik, dinamiklik və s..

Təlim metodları –dedikdə bura vasitə və üsullar, məlumatın verilmə xüsusiyyətləri, şagird

fəaliyyətinin idarə edilməsi və yoxlanılması kimi masələlər aiddir.

Öyrənmə metodları — təlim materialının mənimsənilmə formaları, öyrənmədə produktiv və

Riyazi tədqiqatın (araşdırmaların) əsas metodları : müşahidə və təcrübə, müqayisə,

oxşarlıq və analogiya, analiz və sintez, ümumiləşdirmə və konkretləşdirmə, mücərrədləşdirmə,

xüsusiləşdirmə və digər üsullar nəzərdə tutulur.

müasir üsulları: ənənəvi təlim üsulları və əlavə olaraq problemli,

proqramlaşdırılmış, elektron hesablama maşınlarının tətbiqi ilə aparılan üsullar, xüsusi təlim

üsulları (riyazi modellər və aksiomatik) kimi üsullar nəzərdə tutulur.

Məlumatlandırıcı-inkişafetdirici metodlar iki sinfə ayrılır:

1. Məlumatların hazır formada verilmısi (mühazirə, təlim xarakterli video filmlərin

göstərilməsi, audio materialların dinlənilməsi vasitəsi ilə).

2. Müstəqil olaraq biliklərə yiyələnmə.

Repreduktiv metodlar: şagirdin dərsi danışması, nümunə əsasında tapşırıqların yerinə

yetirilməsi, təlimata uyğun olaraq tapşırıqların aparılması.

Yaradıcı-repreduktiv metodlar: variantlar üzrə iş və s..

Xüsusi təlim üsulları: modelləşdirmə və aksiomatik üsul.

Təlim-tərbiyə prosesində əsas diqqət şəxsiyyətin hərtərəfli və harmonik inkişafı

məsələsinə yönəlmişdir ki, riyaziyyatın tədrisi metodikası da bu məsələni əldə rəhbər tutur.

1. Акперов М.С. Философские проблемы математики. Баку. Элм,1992, 201 с.

2. Александров А.Д. Проблемы науки и позиции учёного. Учебное пособие –

3. Алексеев П.В., Панин А.В. Теория познания и диалектика: Учеб. пособие для вузов. —

шк., 1991. — 383 ст.

Бурбаки Н. Алгебра. Алгебрические структуры, линейная и полилинейная

5. Бакирова А.Ю. Методика преподавания математики. Учебное пособие. – Т., 2007.

6. Рузавин Г.И. Концепсия современного естествознания. М., Гарда-рики, 2005, 240 с.

7. Кудрявцев Л.Д. Мысли о современной математике и ее изучении. М., Наука, 1977.

8. Современные основы школьного курса математики: Пособие для студ. Пед. ин -тов./

Н.Я.Виленкин, К.И.Дуничев, Л.А.Калужнин, А.А.Столяр.— М.; Просвещение, 1980. 240

9. Философия: учебник / под. ред. А.Ф.Зотова, В.В.Миронова, А.В.Разина. – 4-е изд. – М.;

10. Философия : учебник / под. общей ред. Л.Н. Москвичева. – М.; Изд-во. РАГС, 2003. –

It is/are proved, that mathematical scientific methods not only is capable he (she,it)

penetrates to your inside a problem of other sciences, but also she is capable he (she,it)

speaks (takes part) the same as creative the factor of new problems in areas understanding.

Oписывается характеристические черты научного понимание через математики.

Подтверждается, что математические научные методы не только способна вмешивается

внутреннюю задачу других наук, но и она способна вступать так же, как творящего фактора

новых задач в областей понимании.

NDU-nun Elmi Şurasının 30 may 2015-ci il tarixli qərarı ilə çapa tövsiyə

olunmuşdur (protokol № 10)

Məqaləni çapa təqdim etdi: Riyaziyyat üzrə fəlsəfə doktoru, dosent

NAXÇIVAN DÖVLƏT UNİVERSİT ET İ. ELMİ ƏSƏRLƏR, 2015, № 9 (65)

NAKHCHIVAN ST AT E UNIVERSIT Y

SC IENTIFIC WO RKS, 2015, № 9 (65)

НАХЧЫВАНСКИЙ ГОСУДАРСТ ВЕННЫЙ УНИВЕРСИТ ЕТ . НАУЧНЫЕ ТРУДЫ, 2015, № 9 (65)

FİZİKADAN ELEKTRON DƏRSLİK ƏSASINDA “HARMONİK RƏQSİ HƏRƏKƏTDƏ

ENERJİ ÇEVRİLMƏSİ” MÖVZUSUNUN “SIRALAMA” METODU İLƏ TƏDRİSİ

Keywords: Physics, methodology of teaching

Ключевые слова: Физика, методологие обучения

Fəal təlim metodlarından biri olan “sıralama” metodunun təşkili zamanı aşağıdakılara diqqət

yetirmək məqsədə uyğundur (3, 5):

sinifdəki şagirdlər təsadüfi seçim əsasında (kublaşdırma, zər atma, rəqəmli və ya problem

mövzusuna uyğun şəkil sxem kartlarının çıxarılışı və s.) hər birində 4-5 nəfər olmaqla qruplaşdırılır;

şagirdlər arasında qarşılıqlı əməkdaşlığa şəraitin yaradılması, qrupdaxili müzakirələrin

təşkili (şagirdlərin diqqətinə çatdırılır ki, veriləcək tapşırıqlar qruplarda birgə müzakirə edilərək

yerinə yetirilməli, lazım gəldikdə bir-birinə yardım göstərməli və ümumi yekdil qərar

elektron dərslik vasitəsilə mənimsəmənin təşkili (elektron dərslikdən müəllimin tapşırdığı

tədris materialı oxunur, dinlənilir və ya nümayiş təcrübəsinin animasiyası müşahidə edilir);

sinifdə şagirdlər üçün öyrənmə prosesində məsuliyyət daşımalarına inandıran şəraitin

tədris prosesində müəllimin təşkilatçı, idarəedici və istiqamətləndirici funksiyalar

tədris probleminin həllində əsas ideya və fəaliyyətlərin yalnız şagirdlərə məxsus

tədris probleminin həllində şagird fəaliyyəti, bacarıq və nailiyyətlərin dəyərləndirilməsi;

şagirdlərə özünü tərbiyələndirmə keyfiyyətinin aşılanmasının təşkili;

şagirdlərə bilik və ideya daşıyıcıları kimi baxılması və buna onların inandırılması;

tədris prosesində şagirdlərin fəal iştirakının təşkili;

tədris prosesində müxtəlif interaktiv dərs üsullarından istifadə edilməsi;

Beləliklə, elektron dərs vəsaitlərindən istifadə etməklə innovativ təlim yalnız müəyyən

şərtləri yerinə yetirdikdə baş verir. Bu şərtlər aşağıdakılardır:

Müəllim fəal təlimə aşağıdakı fəaliyyət nəticəsində nail ola bilər:

şagird qrupları elektron dərsliyi və şəbəkə kompüter sistemi (fərdi kompüter də ola bilər)

ilə təchiz edildikdə;

(məqsədli və məntiqli sorğulama üsulu ilə);

şagirdləri aktiv düşünməyə cəlb etdikdə;

müxtəlif öyrənmə imkanları, metod və strategiyalar təklif etdikdə;

şagirdlərin ideya və fərziyyələrini dəyərləndirdikdə, rəğbətləndirdikdə və obyektiv

şagirdlərə digər qrupların fəaliyyətini dəyərləndirmək və obyektiv qiymətləndirmək üçün

şərait yaratdıqda (5).

Şagirdlər fəal təlim nəticəsində lazımi nəticəyə nail ola bilər:

şagird qrupları elektron dərsliyi və şəbəkə kompüter sistemi (fərdi kompüter də ola bilər)

ilə təchiz olunduqda;

elektron dərsliklərindəki mətni sərbəst oxumaq, nümayiş təcrübəsinin animasiyasını

müşahidə etmək və laboratoriya işini fərdi icra etmək şəraitinə malik olduqda;

qrupdaxili öyrənmə prosesində şəxsən iştirak etdikdə;

görülən işlər və ideyalar şagirdlərin özlərinə mənsub olduqda;

ideyaların sınaqdan çıxarılmasına nail olduqda;

öz təcrübələrini planlaşdırdıqda və hazırladıqda;

qrupda görülən işlər barəsində sinif qarşısında çıxış etdikdə, təqdimat keçirdikdə;

öz fəaliyyətlərini və digər qrupların təqdimatlarını qiymətləndirdikdə;

tədris problemini irəli sürdükdə və onu həll etdikdə;

qrupdaxili məqsədli müzakirələrdə aktiv iştirak etdikdə və yoldaşları ilə fəal ünsiyyət

işlərin yekununa və nəticələrinə aid öz fikirlərini sərbəst ifadə etdikdə və şəxsi ideyalarını

digər qrup şagirdlər üçün suallar hazırladıqda (qruplar bir-birlərinə suallar verir, cavablar

qutuya atılır və daha sonra müəllim tərəfindən oxunur) (5).

Sıralama metodu aşağıdakı ardıcıllıqla icra edilir (3):

Şagirdlər ixtiyari seçimlə qruplaşdırılır. Qruplar kompüter və fizikadan elektron dərsliklə

(CD-ROM) təchiz edilir, öyrənilən mövzu kompüterdə açılır, şagirdlər qrupda müəllimin göstərişi

əsasında elektron dərsliyin uyğun paraqrafını diqqətlə oxuyur, diktor mətni ilə müşayiət olunan

animasiyaları başa düşənə qədər müşahidə edirlər.

Müəllim elektron dərsliklərində verilən tədris materialının mətnini qabaqcadan hissələrə

bölür və onları qrupların kompüterlərinə göndərir. Şagirdlər mətn hissələrini düzgün ardıcıllıqla

sıralayır və müəllimə qaytarır. Müəllim sıralamanın düzgün variantını və qrupların cavablarını

şagirdlərin diqqətinə çatdırır. Şagirdlər həm öz fəaliyyətlərini, həm də digər qrupların fəaliyyətlərini

müqayisə edir və qiymətləndirirlər.

Nümunə olaraq X sinif fizika kursundan “Harmonik rəqsi hərəkətin enerjisi” mövzusunun

sıralama metodu ilə tədrisini nəzərdən keçirək.

Comments are closed, but trackbacks and pingbacks are open.